How Will Technologies Change our Way of Doing Signal Timing and Coordination

Zong Z. Tian, Ph.D., P.E. Center for Advanced Transportation Education and Research (CATER) University of Nevada, Reno (UNR) and Shaun Quayle, P.E. Washington County, Oregon

May 2018

Outline

- Introducing the TranSync Tool
 - Commonly asked questions in signal coordination

- How is TranSync different from others
- Washington County Case Demo

R

Commonly Asked Questions

- How to quickly find out if the field timing does not match the designed one?
- How to develop optimized timing plan without traffic volumes?
- How to know if we have done the best coordination possible?
- How to explain a signal coordination plan to elected officials or the public?

Common Timing Challenges

□ Early releases

□ Wrong offset reference

□ Clock drifts

TranSync vs. Synchro

Features	Synchro	TranSync
Inputs	Turning volume, lane configuration	Cycle and splits (*no volume)
Timing Data Management	One file for each timing plan	Multiple agency, timing plans in a single database
Optimization	Delay based with detailed geometry and volume	Maximum bandwidth without volume
Diagnosis	No field diagnosis	GPS and real-time time- space diagram on iOS device
Evaluation/Perf ormance	Delays, stops produced by Synchro	Performance index for Quality of Signal Timing
		based on field GPS runs

Washington County's Experience

Citizen complaints in AM, years since retimed
Used TranSync-D for "better than Synchro" models for retiming project.

Old AM Timing Plan

TranSync Optimized AM Timing

Field-Tuned AM Timing Plan

More Control in Optimization

N

Clock & Phase Order Issues

M

Corridor Synchronization Performance Index

Summary

Arterial: PM 140

Timing	No. of Runs	Average Speed (mph)	Average Speed Score	Average Stop Score	Average Score	Qualit	y oi Signal Timing
PM 140 (Avg)	4	23.9	70	70	70	D+	
PM 140 (WB)	2	25.1	73	85	81	B-	
PM 140 (EB)	2	22.7	67	54	58	F	

Details

Arterial: PM 140

Timing Plan: PM 140

Timing	GPS File Name	Average Speed (mph)	% Speed	Speed Score	No. of Stops	Stand No. of Stops	% Stop	Stop Score	Original Score	Cycle Adj.	Spacing Adj.	Adjusted Score	Quality of Sig	jnal
PM 140 (WB)	PM 140[PM 140]-WB-2018-05-01 15-49-58	25.9	65%	75	2	1.8	26%	80	78	78(+0)	78(+0)	78	C+	
PM 140 (WB)	PM 140[PM 140]-WB-2018-05-01 16-23-50	24.3	61%	71	1	1.2	18%	90	84	84(+0)	84(+0)	84	В	
PM 140 (EB)	PM 140[PM 140]-EB-2018-05-01 15-40-46	26.9	67%	77	1	1	14%	93	88	88(+0)	88(+0)	88	B+	
PM 140 (EB)	PM 140[PM 140]-EB-2018-05-01 16-17-38	18.5	46%	56	3	4	57%	16	28	28(+0)	28(+0)	28	F	

Clock & Phase Order Corrected

Corridor Synchronization Performance Index

Summary

Arterial: PM 140

Timing	No. of Runs	Average Speed (mph)	Average Speed Score	Average Stop Score	Average Score		Quality of Si	gnal Timing
PM 140 (Avg)	5	33.1	91	98	96	/	A	
PM 140 (WB)	3	32.6	92	98	96	ŀ	A	
PM 140 (EB)	2	33.8	90	97	95	A	A	

Details

Arterial: PM 140

Timing Plan: PM 140

Timing	GPS File Name	Average Speed (mph)	% Speed	Speed Score	No. of Stops	Stand No. of Stops	% Stop	Stop Score	Original Score	Cycle Adj.	Spacing Adj.	Adjuster Score	Quality of Signa Timing
PM 140 (WB)	PM 140[PM 140]-WB-2018-05-02 16-29-50	32.7	82%	92	0	0	0%	100	98	98(+0)	98(+0)	98	A
PM 140 (WB)	PM 140[PM 140]-WB-2018-05-02 16-19-51	31.2	78%	88	1	0.2	3%	98	95	95(+0)	95(+0)	95	A
PM 140 (WB)	PM 140[PM 140]-WB-2018-05-02 16-08-31	34	85%	95	1	0.2	2%	98	97	97(+0)	97(+0)	97	A
PM 140 (EB)	PM 140[PM 140]-EB-2018-05-02 16-24-31	39.6	99%	100	0	0	0%	100	100	100(+0)	100(+0)	100	A
PM 140 (EB)	PM 140[PM 140]-EB-2018-05-02 16-12-42	28.1	70%	80	2	0.8	11%	95	90	90(+0)	90(+0)	90	A-

Resultant New Timing Cycle Lengths – Scholls Ferry

	OLD	NEW
AM Shoulder	110	110
AM Peak	110	120
Midday	100	100
PM Shoulder	100	125
PM Peak	120	140
Weekend	100	100

18

County Conclusions

- Effective tool for (1) retiming projects & (2) timing health & accuracy.
 - Useful features in D = better starting point for implementation
 - Useful features in M = ground-truth results to adjust from for progression.
 - Non-coord movement timing optimization through other means (field fine tuning)

County Conclusions

- Must import accurate timing parameters
- Clearly showed issues
 - Clock drift or
 - Differing field timings vs. TranSync/Synchro files.
- Manual process but high benefit/cost
- No cabinet access required!
 - Ideal for consultant retiming & reporting.

N

UTC Spotlight

University Transportation Centers Program

This month: University of Nevada, Reno | January 2015

New Signal Timing Tool Helps Engineers Save User Costs and the Environment

Are Adaptive Signal Control Systems a Solution to Urban Congestion?

US Department of Transportation Office of the Assis...

Subscribe 25

151 views

Questions?