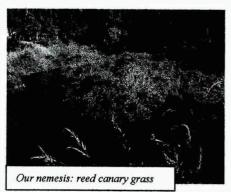
Canby Community Park Habitat Restoration Project

:

City Of Canby


Metro Regional Parks and Greenspaces Restoration Contract # 922546

December 2000-June 1, 2003

Canby Community Park...

.....in the City of Canby, adjacent to the Molalla River; wetlands connected to the river via a stream fed by seeps and springs. The stream flows into a pond and passes under the road via a culvert...

The objective of our project was to begin the first phase of a multi-phased project to restore and enhance the entire riparian area and associated

wetlands within the approximate 3.5 acre site in order to provide better quality fish and wildlife habitat and develop long term partnerships both at the local and regional levels.

The wetlands was (and still is) overgrown with reed canary grass. We've learned a thing or two about that plant, which I will address later in the narrative. The pond is shallow (max of 9') and in the summer the water gets very warm. The stream flows into the pond prior to passing through the culvert and on to the river. We are exploring measures to mitigate the negative impacts of the pond on stream temperature and water quality. We have started re-vegetating the pond bank, and are looking at re-engineering the culvert and/or separating the pond from the stream in future phases. Fish and Wildlife is providing guidance on this subject and we will continue to seek their advice on any future activities related to mitigation measures.

Meanwhile we will continue to monitor the impact of our restoration efforts on water quality, particularly stream temperature. Tony Crawford's Team Orion geography students at Ackerman Middle School are monitoring water quality at the site and will continue to do so throughout the restoration process. Ongoing results of their sampling are posted on their website. (www.ackerman.canby.k12.or.us.)

Beginning in February of 2001 we began a community wide exploration of possible partners for the project, and developed a restoration and monitoring plan with assistance from Environmental Consultant Loverna Wilson. Public and private presentations, cable access talk shows, public service announcements, newspaper articles and website exposure have helped create support for the project. Cultivating new partners and the care and feeding of existing partners is an on going process, and key to the long term success of our efforts.

During the preliminary planning process it became apparent that due to the location of the wetlands (not apparent from the main area of the park) a more visible wetland demonstration site would be advantageous. First of all, it would attract the attention of park visitors and hopefully pique their curiosity about the restoration project, and in doing so provide the public with learning opportunities via interpretive signage, volunteer opportunities, etc. We hoped increased awareness would increase support for the project, and we believe this to be true.

The other thing we have done is left flagging material on the plants. Because the grass is so aggressive, we have had a difficult time finding the new plantings even a few months after we have planted them. The flagging helps us located the plants. We continue to retrofit plants with flags and bags.

The second thing I have learned is that I could have spent an entire year just cultivating partnerships. I did not allocate enough of my hours to that task. Since I have several other projects I'm working on I had to get good at juggling my time. In retrospect I would have concentrated only on setting up the initial project partners, and also recruited an intern to help with project coordination etc.

The third thing I've learned, which is related to the above comment, is that restoration can be a full time job if you actually explore all the" possible" connections. The opportunities are rather overwhelming. Our project has the on the ground component for sure... the prepping planting etc, but there are opportunities for website development, plant propagation, marketing, publicity, GPS, mapping, interpretive signage and graphic arts, photography, videography, oral history, geography, watersheds, wildlife, landscape design, construction, recreation, etc etc. Really it seems like the only limitation is time. Of course I have no solution to this other than to hope that communities and policy makers can value the connections enough to allocate funds for such a person.

Lastly, as the project has grown to include such a diverse group of participants, it becomes ever more important to have a systematic way of documenting involvement in addition to the traditional sign in sheets etc. I now have a spreadsheet I share with my partners so they can easily provide the documentation I need. Volunteer hours are easy to underestimate and or forget altogether if you are not directly managing them.

In conclusion we are grateful we have received this grant seed money, and I believe we

are going to be able to continue the restoration process with the partners we have developed during phase I, and with the new partners we will be able to bring on board for the next phases. Our Agriculture teacher at Canby High School has a new state of the art facility for propagating plants and his students are now propagating native plants for our future plantings. We expect the high school to provide 1000 plants for our fall planting this year. We will support the school venture by purchasing the plants

Tony Crawford's Ackerman Middle School students

at a reduced cost with donations from our local community. Those are the types of partnerships that add value to our community and insure the success of or project. Again thank you for your support.

Canby Community Park Grant Funded Plants

<u>Quantity</u>	<u>Plant Name</u>
69	Ash
73	Vine Maple
72	Black Cottonwood
52	Western Red Cedar
30	Big Leaf Maple
93	Willow
29	Red Alder
18	Black Hawthorne
27	Pacific Crabapple
22	Chokecherry
5	Western Flowering Dogwood
89	Twinberry
29	Serviceberry
93	Nootka Rose
50	Thimbleberry
99	Indian Plum
31	Nine Bark
44	Red Osier Dogwood
37	Douglas Spirea
15	Elderberry
19	Snowberry
30 27	Oceanspray
8	Salmonberry Gooseberry
13	Mock Orange
2	Stinking Currants
15	Sweet Gale
5	Cascara
186	Saw beak sedge
66	Operta sedge
160	Soft rush
154	Hard-stemmed bulrush
218	Slough sedge
132	Spreading rush
168	Dagger-leaf rush
50	Baltic rush
93	Small-fruited bulrush
130	Western Mannagrass
56	Spike rush
182	Tufted hair grass

Vegetation

- 1. Establish photo points:
 - a) At the 100' X 100' initial planting site
 - b) Along the stream bank adjacent to interpretive site
 - c) At the interpretive site
 - d) At the first foot bridge
- 2. Map the photo points using GIS
- 3. Take initial photos, and then, at a minimum, yearly photos in June of each year.
 - a) Assess dominant plant species on an annual basis during the optimal growing portion of the season if possible
 - b) Document species diversity and relative proportion of native and non-native species
 - c) Document which species seeded and/or planted
 - d) Evaluate plant health and, if necessary, replace, repair, and/or protect missing or damaged plants
 - e) Monitor reed canary grass and add mulch in a bag as necessary.

Water Quality

- 1. Establish water quality testing points:
 - a) Test at a minimum on an annual basis
 - b) Graph/compare results
 - c) Test for:
 - Conductivity Dissolved
- Water Temperature
- Air Temperature
- PH Turbidity
- Total Dissolved Solids

Phase I Water Quality Testing Points:

- 1. First foot bridge
- 2. Middle foot bridge
- 3. Upper foot bridge

Wildlife Utilization

- 1. Compile baseline species diversity list
- a. Assess relative proportion of native and non-native species using the site
- 2. Survey annually and update species list/nesting locations etc.

Canby Community Park Habitat Restoration Planting Recommendations

By Loverna Wilson, Wetland Ecologist P.O. Box 2284, Corvallis, OR 97339 (541-758-3403)

There are three characteristics that define a wetland: **hydrology** (how much water), soil (composition, color), and **vegetation** (plant communities). These three interrelated characteristics are important to consider when designing, planting, and maintaining your wetland plots.

Hydrology: the ground must be saturated or flooded long enough during the growing season to become anaerobic (no oxygen in it).

- □ The site needs to be flat, with a little ridge around the perimeter, so water will stay on the site.
- □ You'll need an irrigation system, with a way to control the amount of water delivered to various communities. Some will need more water, while others will need less.
- You'll only need to irrigate in the spring. Most Oregon wetlands are seasonal wetlands. They dry out in the summer because we don't have summer rainfall like the eastern part of the country does. You can mimic natural systems by having the sites saturated or ponded early in the spring (March-April), then start reducing water till the sites are dry by the end of June.
- During the first 2-3 years, you may need to water during the hot summers until there is good root establishment. This is especially true of the trees and shrubs.

Soil: High clay content in the soil may keep water from draining away, holding it on or near the surface long enough to become anaerobic. Soil chemistry changes when there is no oxygen. Over time, soils change color from brown to gray or black, sometimes with rusty red spots in it.

- □ If the soils on your site are well drained, you will need to irrigate more frequently to keep things wet enough in the spring.
- □ If there is a clay layer or high clay content, the site will hold water longer, and therefore, require less water to maintain saturated conditions.
- □ If your soils are not hydric, they will develop hydric characteristics if they are kept wet long enough each spring.

Vegetation: Plant communities are different on soils with no oxygen. Most plant roots get their oxygen from air pockets and oxygenated water in the soil. Only species adapted to getting oxygen from the air down to the root cells can survive in wet, anaerobic conditions.

Canby Community Park Habitat Restoration Planting Recommendations

Suggested Wetland Plant Communities

Forested Wetland – wetness category 1

The ash woodland should be at one end of the demonstration site, so it has room to spread, while leaving space for other communities. Initially, several ash seedlings could be planted, but they should be thinned down to one or two as they grow larger. It should be kept quite wet until early summer so the skunk cabbage will survive. Best to have ponded water until end of April or May.

Oregon ash	Fraxinus latifolia	FACW
Slough sedge	Carex obnupta	OBL
Skunk-cabbage	Lysichiton americanum	OBL

Shrub Wetland – wetness category 1-2

This community should be on the edge of the forested site. The species will eventually grow in preferred habitats along the gradient from wooded to open areas. Water level similar to the ash/slough sedge/skunk cabbage community.

Pacific willow	Salix lucida spp. lasiandra	FACW+
Sitka willow	Salix sitchensis	FACW
Douglas spiraea (hardhack)	Spiraea douglasii	FACW
Slough sedge	Carex obnupta	OBL

Shrub Wetland – wetness category 2

This shrub community can be placed in one or two places along the line of communities. This community needs saturated soils, but does not necessarily require so much ponded water as the previous shrub community.

Pacific willow	Salix lucida spp. lasiandra	FACW+
Sitka willow	Salix sitchensis	FACW
Red-osier dogwood	Cornus stolonifera	FACW
Pacific ninebark	Physocarpus capitatus	FACU-
Slough sedge	Carex obnupta	OBL

Vernal Pools within the wet prairie (shallow depressions) – wetness category 2

Small depressions in the clayey wet prairies hold shallow water in the early spring, making it slightly wetter than the prairie community. The pools develop a characteristic community of grasses, sedges, and ephemeral flowers including the species listed below. Careful soil preparation, leaving one or two shallow depressions in the flat wet prairie community, should support a vernal pool community.

American sloughgrass	Bechmannia syzigachne	OBL
Water foxtail	Alopecurus geniculatus	OBL
Dagger-leaf rush	Juncus ensifolius	FACW
One-sided sedge	Carex unilateralis	FACW
Common downingia	Downingia elegans	OBL
Fragrant popcornflower	Plagiobothrys figuratus	FACW
Marsh speedwell	Veronica scutellata	OBL

Drier transitional and upland areas on the wetland and riparian edges

Any combination of these species can be planted along the upland edge of the wetland plots. Use the wetland status code to decide which species should be on the wetter end and which on the drier sites of this transitional zone.

Black cottonwood	Populus trichocarpa	FAC
Red alder	Alnus rubra	FAC
Black hawthorn	Crataegus douglasii	FAC
Nootka rose	Rosa nutkana	FAC
Common snowberry	Symphoricarpos albus	FACU
Common camas	Camassia quamash	FACW
Cow-parsnip	Heracleum lanatum	FAC+
Western buttercup	Ranunculus occidentalis	FAC
Large-leaved avens	Geum macrophyllum	FACW-

Suggested Pond Plant Communities

Shoreline Wetland – wetness category 1

Water sedge	Carex aquatilis	OBL
Small-fruited bulrush	Scirpus microcarpus	OBL
Soft rush	Juncus effusus	FACW
Pond edge, shallow water		
Hard-stemmed bulrush	Scirpus acutus	OBL
Narrow-leaf burreed	Sparganium emersum	OBL
Broad-leaf cattail*	Typha latifolia	OBL

Canby Community Park Habitat Restoration Planting Recommendations

Plant Species List

.

Туре	Common Name	Scientific Name	Status
TREE	Alder, red*	Alnus rubra	FAC
	Cottonwood, black*	Populus trichocarpa	FAC
	Ash, Oregon*	Fraxinus latifolia	FACW
SHRUB	Dogwood, red-osier*	Cornus stolonifera	FACW
	Hawthorn, black*	Crataegus douglasii	FAC
	Ninebark, Pacific*	Physocarpus capitatus	FACU-
	Rose, Nootka*	Rosa nutkana	FAC
	Snowberry, common*	Symphoricarpos albus	FACU
	Douglas spiraea, hardhack*	Spiraea douglasii	FACW
	Willow, Pacific*	Salix lucida spp.lasiandra	FACW+
	Willow, Sitka*	Salix sitchensis	FACW
GRASS	Barley, meadow	Hordeum brachyantherum	FACW-
	Bentgrass, spike	Agrostis exarata	FACW
	Foxtail, meadow	Alopecurus geniculatus	OBL
	Hairgrass, tufted	Deschampsia cespitosa	FACW
	Mannagrass, northwestern	Glyceria occidentalis	OBL
	Sloughgrass, American	Bechmannia syzigachne	OBL
SEDGE	Bulrush, hard-stemmed	Scirpus acutus	OBL
SEDGE	Bulrush, small-fruited	Scirpus microcarpus	OBL
	Spikerush, creeping	Eleocharis palustris	OBL
	Sedge, dense	Carex densa	OBL
	Sedge, hare's-foot	Carex leporina	FACW
	Sedge, saw-beak	Carex stipata	OBL
	Sedge, slough	Carex obnupta	OBL
	Sedge, water	Carex aquatilis	OBL
	Sedge, water	Carex pellita (lanuginosa)	OBL
			1
RUSH	Rush, dagger-leaf	Juncus ensifolius	FACW
	Rush, slender	Juncus tenuis	FACW-
	Rush, soft	Juncus effusus	FACW
	Rush, spreading	Juncus patens	FACW
			1
FORB ¹	Avens, large-leaved	Geum macrophyllum	FACW-
	Brooklime, American	Veronica americana	OBL
	Buttercup, celery-leaf	Ranunculus sceleratus	OBL

.

Sisyrinchium californicum Athyrium filix-femina Vancouveria hexandra Symphoricarpos albus Mahonia rep. Lonicera involucrata

.

Golden-Eyed Grass Lady Fern Inside-Out-Flower Creeping Snowberry Creeping Oregon Grape Twinflower

Water Quality Data Molalla River Tributary at Community Park Canby, Oregon

Data collected by Team Orion students of Ackerman Middle School.

	Upper Bridge Location								
Date	Air Temp	Water Temp	River Level	pH	Turbidity	T.D.S.	Conductivity	Dissolved 02	
2/11/03	14.8	11.2	n/a	6.91	2.21	103.9	220	n/a	
2/18/03	12.5	11.3	n/a	7.06	2.82	101.7	215	n/a	
2/25/03	12.6	11.0	n/a	7.10	2.60	12.5	214	n/a	
3/4/03	9.8	10.5	n/a	7.20	1.20	107.0	224	n/a	
3/1103	15.3	12.3	n/a	6.84	2.85	105.7	221	n/a	
4/8/03	21.4	14.2	n/a	6.69	1.25	110.5	231	n/a	
4/10/03	14.2	12.7	n/a	6.88	1.26	107.1	224	n/a	
4/15/03	16.5	13.5	n/a	6.99	2.18	111.2	132	n/a ·	
4/22/03	14.6	13.5	n/a	7.00	1.23	112.1	234	n/a	
4/29/03	17.8	13.4	n/a	6.85	1.61	110.8	232	n/a	
5/1/03	23.6	15.2	n/a	6.94	2.42	111.4	233	n/a	
5/6/03	16.5	13.7	n/a	6.92	1.97	112.6	234	n/a	

Upper Bridge Location

Middle Bridge Location

Date	Air Temp	Water Temp	River Level			T.D.S.	Conductivity	Dissolved 02
2/11/03	15.1	11.2	n/a	7.08	2.14	101	211	n/a
2/18/03	11.4	11.4	n/a	7.11	3.65	96.2	201	n/a
2/25/03	12.6	10.9	n/a	7.14	5.31	101.6	212	n/a
3/4/03	10.1	10.7	n/a	7.28	1.57	104.6	219	n/a
3/11/03	13.7	13.4	n/a	6.91	1.78	105.7	221	n/a
4/8/03	21.6	14.2	n/a	6.69	1.20	109.0	227	n/a
4/10/03	14.5	12.9	n/a	6.90	1.45	107.9	225	n/a
4/15/03	15.0	13.4	n/a	7.05	1.22	109.4	228	n/a
4/22/03	14.5	13.4	n/a	7.08	1.17	111.2	232	n/a
4/29/03	15.8	14.6	n/a	6.86	1.47	110.5	231	n/a
5/1/03	23.1	15.0	n/a	7.02	2.72	111.3	232	n/a
\$/6/03	16.4	13.5	n/a	7.01	1.83	111.6	233	n/a

	Lower Bridge Location							
Date	Air Temp	Water Temp	River Level	pH	Turbidity	T.D.S.	Conductivity	Dissolved 02
2/11/03	13.7	11.3	n/a	7.01	1.90	97.6	204	n/a
2/18/03	10.4	10.4	n/a	7.11	4.16	96.7	202	n/a
2/25/03	11.2	10.6	n/a	7.15	2.63	96.2	201	n/a
3/4/02	10.0	10.7	n/a	7.15	2.20	97.2	204	n/a
3/11/03	12.2	13.1	n/a	6.93	1.68	97.8	204	n/a
4/8/03	19.7	15.4	n/a	6.72	0.877	99.2	207	n/a
4/10/03	13.4	13.1	n/a	6.81	1.72	97.3	203	n/a
4/15/03	15.3	14.9	n/a	7.06	0.92	99.2	207	n/a
4/22/03	14.8	14.7	n/a	7.08	1.25	100.8	211	n/a
4/29/03	17.3	15.2	n/a	7.02	.9	99.2	207	n/a
5/1/03	22.9	17.0	n/a	7.05	1.25	100.7	210	n/a
5/6/03	16.9	15.3	n/a	7.06	1.12	99.6	208	n/a

Lower Bridge Location

Note: Air and water temperature are measured in Celcius degrees. Turbidity is measured in NTU's. T.D.S. stands for Total Dissolved Solids and is measured in milligrams per liter. Conductivity is measured in ms/cm (microsiemen per centimeter). River level is recorded in feet.

Return to Watershed Project page.

Return to Team Orion Science home page.

Return to Team Orion Geography home page.