Technical Memorandum

Hope Whitney / Metro
Matthew Mudge, R.G. / ERM Erik Ipsen, P.E. / ERM
January 3, 2013
Phase II Environmental Site Assessment Results and Recommendations, Blue Heron Mill, Oregon City, Oregon

Environmental Resources Management

1001 SW 5th Avenue Suite 1010 Portland, OR 97204 (503) 488-5282 (503) 488-5142 (fax)

This memorandum summarizes the Phase II Environmental Site Assessment (ESA) activities undertaken at the Blue Heron Mill in Oregon City, Oregon, (the Site) in accordance with the ERM-West (ERM) proposal to Metro dated 18 April 2012 and scope of work identified in the Work Order for Phase II ESA services dated 5 September 2012. This document presents the assessment results and provides recommendations for Metro's consideration.

The Phase II ESA sampling rationale and approach were presented to, and discussed with, Metro and the Oregon Department of Environmental Quality (ODEQ) in a 23 July 2012 meeting/conference call held at ERM's Portland office. Follow-up email correspondence provided responses to agency comments and additional clarification regarding details of the proposed sampling locations and collection methods, analytical testing methods, laboratory reporting limits, and potentially applicable screening criteria (E. Ipsen [ERM] to M. Romero [ODEQ] on 24 August, and 12 September, 2012). The scope of work was modified to incorporate several of ODEQ's comments. The presentation and email correspondence is included in Appendix A.

All work activities were completed in compliance with the Environmental Consultant Personal Services Agreement between ERM and Metro (Metro Contract No. 931306).

INTRODUCTION AND BACKGROUND

Project Description

Metro is considering acquisition of the Blue Heron Mill property, a former paper mill located in Oregon City, Oregon. ERM has been engaged by Metro to provide advice and environmental consulting services while Metro contemplates acquisition of the property, negotiates environmental

A member of the Environmental Resources Management Group

agreements, and pursues closure of the acquisition, if applicable. As part of its environmental due diligence, Metro contracted ERM to perform historical research and a Phase II ESA of the subject site¹. This memorandum has been prepared to provide results of Phase II ESA activities.

Purpose

Environmental due diligence is a recommended, and often required, component of property transaction evaluation in order to adequately assess potential or perceived environmental concerns or liability associated with a subject property. Previous studies of the subject site, or areas within the subject site, including a Phase I ESA, have identified several Recognized Environmental Conditions (RECs), as defined in ASTM E 1527-05, in conjunction with areas at the Site. Many of these are based on the facility operations where hazardous materials were used or stored as well as the historical nature of long-term industrial use. As such, these RECs may reflect general practices rather than specific or certain events or conditions that may have occurred at the Site. Completion of site reconnaissance, with collection and analysis of environmental samples from precise areas with perceived or potential impacts from past land use and operations, allows for a comprehensive and reasonable assessment of environmental risk.

Background

The Blue Heron Mill is the site of a former paper manufacturing facility located in the northern area of the Oregon City business/industrial area. The Site is on the southwest bank of the Willamette River, immediately downstream of Willamette Falls (Figure 1). The falls are located at approximately river mile (RM) 26.5, with an approximate 40-foot drop in the river elevation. The Blue Heron Mill facility is comprised of an approximate 23- acre parcel of land situated on a relatively flat area between the Willamette River and a basalt bluff to the south/southeast. The facility is bounded by the Willamette River to the west/northwest, Oregon City's business district to the northeast, and a railroad line and McLoughlin Boulevard (US Route 99E), followed by a basalt bluff, to the south and southeast.

¹ A formal Phase I ESA has not been prepared by ERM for the subject site on behalf of Metro. However, many of the historical research activities usually performed as part of a Phase I ESA have been performed and the results of those activities are presented in this memorandum.

The Site includes up to 40 buildings associated with paper manufacturing such as process buildings; storage buildings; a boiler plant; maintenance, auto, welding, carpentry, and millwright shops; and offices. Other Site features include a wastewater primary clarifier, holding tanks for various process chemicals and paper stock, wood chip silos, and power substations. An active rail line and various spurs are present at the Site. The majority of the Site is covered by buildings or asphalt/concrete surfaces. The current site layout is shown in Figure 2.

The Site is directly underlain by basalt bedrock with areas of historical grading and filling completed to facilitate the large, flat property parcel. Groundwater is relatively shallow across much of the Site with an inferred flow to the northwest based on the local topography and adjacent surface water body.

Dating back to the early to mid-1800s, the Site was developed with residences, commercial buildings, and industrial businesses. Industrial uses included a paper mill, saw mill, flour mill, and woolen mill. Construction of the first paper mill in Oregon at the Site was begun in 1866 near the current Mill #2 and Mill #3 buildings on the Site. For over a century, paper mill operations continued at the Site with supporting property acquisitions and infrastructure improvements. From 1908 through 1932, Hawley Pulp and Paper operated wood pulping and paper manufacturing activities at the Site. The company was sold twice, in 1932 and 1948, but continued to operate under the Hawley name. In 1961, the owner, Times Mirror Corporation, changed the company name to Publishers Paper. It operated as Publishers Paper from 1961 through 1986 when it was purchased by the Jefferson Smurfit Corporation (Smurfit). Smurfit owned and operated the mill from 1986 through 2000. Blue Heron Paper Company purchased the Site in 2000 and operated from May 2000 until February 2011, when it ceased operations.

Significant process operations carried out at the Site historically included: paper manufacturing, pulp manufacturing, pulp bleaching, steam plant operations, wastewater handling, and storm water management.

Currently, salvaging operations are being undertaken at the site to extract salvageable equipment and materials.

Based on the Site's use as a large-scale heavy industrial facility with a significant time period of operations, a thorough review of available information was completed in order to adequately assess and identify potential environmental concerns necessitating further evaluation. A list of the documents reviewed by ERM is provided in Appendix B. The scope of work for the Phase II ESA activities was defined based on this

information as well as discussions and correspondence with Metro and the ODEQ. The presentation and email correspondence presenting the sampling rationale and approach including details of the proposed sampling locations and collection methods, analytical testing methods, laboratory reporting limits, and potentially applicable screening criteria are included in Appendix A.

The storm water system for the facility drains to the two pump stations before being pumped to the pipe tunnel and then to the clarifier. Water is then pumped from the clarifier to the off-site treatment lagoon (on the opposite bank of the Willamette River at an upstream property currently not included in the Site or Phase II ESA) before discharging to the Willamette River.

SCOPE OF WORK

The scope of work included sampling of several types of media and specific areas of interest. The conceptual sampling strategy is illustrated in Figure 3. Sampling within the various areas depended upon the individual area's historical operations and associated suspected or known contaminants. Table 1 identifies areas of potential environmental concern based on a review of available information and Table 2 depicts the sampling rationale and approach and provides a summary of site media/feature, type of sample, purpose, constituents of interest (COIs), specific sampling locations, and additional notes. Sampling locations are shown on Figure 4 and the scope of work and rationale for each of the areas is summarized in the following sections. The conceptual sampling strategy and approach, sampling locations, and corresponding laboratory analyses have been reviewed by the ODEQ and the sampling scope was modified to incorporate several of ODEQ's comments.

A limited screening for asbestos was completed to assess possible impacts of ongoing salvage and demolition activities occurring at the Site; this included analytical testing of samples collected from the storm water system and tailrace solids. This assessment did not include a hazardous building materials survey of any of the facility structures. Additionally, the scope of services did not include an assessment of indoor air quality, outdoor air emissions, radon, lead paint, mold, building materials survey for asbestos containing material (ACM), PCB ballast, or wetlands.

Upland Soil, Water, and Solids Sampling

Upland soil, water, storm water solids, and tailrace solids samples were collected for laboratory analysis of contaminants. Sample locations are

presented in Figure 4. A sampling matrix summarizing the samples and analyses performed is presented in Table 3. Activities performed as part of this task included:

- Drilling 11 boreholes and collecting one soil sample from each borehole;
- Collection of four water and four solids samples from the storm water system;
- Collection of three water and five solids samples from the tailraces. Shallow solids samples from Tailrace 2 were composited prior to laboratory analysis;
- Collection of two groundwater samples from boreholes and three seep water samples; and
- Laboratory analysis of the samples for the constituents listed in Table 3.

Intake Basin Sediment Sampling

Sediment samples from the Intake Basin were collected for laboratory analysis of contaminants. Sample locations are presented in Figure 4. A sampling matrix summarizing the samples and analyses performed is presented in Table 3. Activities performed as part of this task included:

- Collection of three surface sediment samples (0 to 0.5 feet below sediment surface [bss], i.e. below mudline) and three sediment cores with collection of four subsurface sediment samples to a maximum depth of 3.0 feet bss; and
- Laboratory analysis of the samples for the constituents listed in Table 3.

FIELD INVESTIGATION

The investigation was performed in accordance with applicable regulations and generally accepted environmental science and engineering practices. This section describes the field methods used during the investigation.

Preliminary Planning

ERM prepared a site-specific Health and Safety Plan (HASP) for field personnel as required by the Occupational Safety and Health Administration (OSHA) for personnel performing work associated with hazardous substances. The HASP was designed to protect personnel from potential and known hazards at the Site during field activities.

ERM and Metro identified the areas of potential concern during preliminary conversations and site visits.

Before drilling, a One-Call Utilities Notification was conducted and a private utility locator assessed each proposed boring location for buried utilities. A few proposed locations were in close proximity to identified underground utilities and, as such, were relocated.

Sampling Activities

Specific soil sampling locations were selected during a previous site reconnaissance. Each location was screened for buried utilities in accordance with ERM's standard subsurface clearance (SSC) procedures. This included 'clearing' the first four feet below ground surface (bgs) with a hand auger. Soil borings were advanced using a hand auger and a direct push drill rig (below 4 feet bgs). Storm water and tailrace solids were collected with hand tools. Surface sediment samples were collected from the Intake Basin using a ponar-type grab sampler and sediment cores were advanced using a vibracore deployed from a marine research vessel equipped for scientific sampling. Sampling locations are shown on Figure 4.

On 7 and 15 September 2012, under the supervision of ERM, 11 soil borings were completed at the Site to depths ranging from 1.5 to 17.5 feet bgs. Two of the borings (F38-01 and TD-01) encountered groundwater and were advanced so that representative groundwater samples were obtained. Cascade Drilling L.P. of Clackamas, Oregon was contracted to advance the borings using direct push drilling technology.

The borings were advanced using a truck-mounted direct push drilling rig equipped with a 5-foot long, 2-inch outside diameter (OD) Macrocore sampler and hydraulically-driven steel rods. The soil boring installations, soil types encountered, and field screening results observed are summarized on Table 4. Boring logs are provided in Appendix C.

The boring installation work was performed by an Oregon-bonded and licensed monitoring well contractor. The boring installations were completed in accordance with the Oregon Groundwater Law (Oregon Revised Statute [ORS] Chapter 537) and the Rules for Construction and Maintenance of Monitoring Wells and Other Holes in Oregon (Oregon Administrative Rules [OAR] Chapter 690, Division 240).

Following completion of the drilling activities, the borings were backfilled with bentonite chips to within 6-inches of the ground surface. The bentonite chips were then hydrated by adding potable water and were allowed to set up. Additional bentonite chips and water were added as needed. The borings were then finished to grade with asphalt or concrete to match the surrounding ground surface.

Storm water and tailrace solids samples were collected using decontaminated hand tools. Multiple aliquots were collected at each sample location in order to provide sufficient volume of material for analysis. One tailrace solid sample was composited in accordance with Table 3 (the 0 to 0.5 foot bgs interval collected at TR2-02 and TR2-03).

On 14 September 2012, under the supervision of ERM, three surface sediment samples (0 to 0.5 feet bss) and three sediment cores were advanced in the Intake Basin to depths ranging from 3.1 to 3.3 feet bss. Gravity Environmental L.L.C. of Fall City, Washington was contracted to advance and collect the sediment cores using a marine research vessel.

Soil, Solids, and Sediment Sample Collection and Screening Procedures

Soil, solids, and sediment samples were field screened for evidence of possible contamination with discrete samples collected from each core or grab sample for potential laboratory analysis based on the prescribed sampling approach, the results of field screening, or changes in subsurface conditions (i.e. lithologic contacts or depth with respect to the groundwater interface). Shallow soil samples from the boreholes were collected using a decontaminated hand auger (from 0-4 feet bgs). Deeper soil and subsurface sediment samples were collected in disposable acrylic or acetate core sleeves and storm water and tailrace solids were collected with decontaminated hand tools. Surface sediment samples from the Intake Basin were collected with a decontaminated ponar-type grab sampler.

Upon collection, each sample was immediately placed in clean, laboratory provided 8-ounce glass sample jars and capped with a Teflon-lined lid. The sample jars were then labeled and transferred to a chilled container for shipment to the analytical laboratory. Standard sampling protocols, including the use of chain-of-custody documentation, were followed for the sampling procedures.

The soil samples were classified according to the Unified Soil Classification System (USCS) and field-screened for the presence of potential contamination by visual, olfactory, sheen test, and headspace vapor methods. Screening for the presence of organic vapors was conducted by the headspace method using a photo-ionization detector (PID) equipped with a 10.6 ev lamp. Immediately following collection of the sample, approximately five grams of disaggregated soil was placed into a sealed plastic bag. The sample was then agitated to break up any large pieces of soil. After an approximate 10-minute stabilization time, the PID probe was inserted into the bag and a measurement was then recorded. The results of the headspace screening are recorded in parts per million (ppm) on the boring logs (Appendix C) and summarized on Table 4. The headspace method results should be considered a qualitative indicator of possible contamination and should be used for relative comparison purposes only.

The types of subsurface soils beneath the Site were highly variable, likely due to the historical grading that has occurred at the facility during its development and operation. Subsurface materials encountered were predominantly fill material underlain by shallow basalt bedrock.

Water Sample Collection Procedures

Groundwater samples were collected from two of the borings (F38-01 and TD-01) with a temporary well point installed in the borehole. The samples were collected using a disposable 1-inch diameter 0.010-inch slotted PVC screen and casing. The screen intervals for borings F38-01 and TD-01 were each set at depths of 5 to 10 feet bgs and 3 to 8 feet bgs, respectively.

Upon installation, the temporary well points were allowed to equilibrate for approximately 10 minutes. Then the depth to water inside the well casing was gauged relative to the ground surface using a water level probe. Groundwater was observed at depths ranging from 5 to 6 feet bgs. The measured depth to groundwater at each location is included on the boring logs in Appendix C.

Groundwater purging and sampling was conducted using a peristaltic pump and new, dedicated polyethylene tubing. Prior to sample collection, the well point was purged until turbidity decreased (approximately 1liter).

Grab samples of seep water, storm water, and tailrace surface water were collected directly into sample containers.

Volatile organic compound (VOC) sample containers were completely filled such that no headspace was present that would allow for the loss of volatiles. The sample containers were then labeled and transferred to a chilled container for shipment to the analytical laboratory. Standard sampling protocols, including the use of chain-of-custody documentation, were followed for the sampling procedures.

Decontamination Procedures

Soil and groundwater samples were collected using a combination of dedicated, single-use equipment and decontaminated, reusable equipment. Dedicated, single-use sampling equipment included nitrile gloves, laboratory-provided sample jars, new acrylic or acetate sleeves for soil and sediment cores, PVC well screen and casing, and new polyethylene tubing for groundwater samples. Reusable sampling equipment included drilling rods and a Macrocore sampler. The reusable equipment was decontaminated using a steam pressure washer with potable water prior to use, and between boring locations, to prevent cross-contamination.

Investigation Derived Waste

Soil cuttings and water generated from the drilling and sampling activities were placed in Department of Transportation (DOT) approved 55-gallon drums, labeled, and stored in a secure location on site. Disposal of investigation derived waste (IDW) at an approved facility has not yet occurred.

ANALYTICAL TESTING

The soil, solids, sediment, and water samples collected during the investigation were submitted to ALS Laboratories, Inc. (ALS) located in Kelso, Washington for analysis. Chain-of-custody procedures were followed from sample collection to sample analysis.

Analytical Methods

Chemical analyses varied depending on the Site feature, associated COIs, media type, and sample location. The conceptual sampling strategy and sampling rationale and approach for the Phase II ESA are shown on Figure 1 and Table 2, respectively, with a detailed sampling matrix presented on Table 3. The samples were analyzed by the following methods, in accordance with Table 3:

- Total Metals by EPA Method 6000/7000 Series
- Total Petroleum Hydrocarbons (TPH) by NW Methods
- Volatile Organic Compounds (VOCs) by U.S. Environmental Protection Agency (EPA) Method 8260C
- Semivolatile Organic Compounds (SVOCs) by EPA Method 8270D
- Polychlorinated Biphenyls (PCBs) by EPA Method 8082A
- Asbestos by Polarized Light Microscopy (PLM) ALS ENV004

Analytical Results

Results of the analytical testing are summarized in Tables 5 through 13, separated by the different media sampled. The laboratory analytical reports and chain-of-custody documentation for the sampling activities are included in Appendix D. The sampled media and corresponding analytical data results summary tables are identified below.

- Upland Soil Tables 5 and 6
- Storm Water and Tailrace Solids Tables 7 and 8
- Storm Water and Tailrace Water Tables 9 and 10
- Groundwater and Seep Water Table 11
- Intake Basin Sediment Tables 12 and 13

ERM performed a limited data quality and any necessary qualifiers were applied following the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999, the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004, and the USEPA National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs), September 2005. The data validation memorandum is included in Appendix E.

No data were determined to be unusable. All of the data, including qualified data, can be used for decision-making purposes; however, the limitations indicated by the applied qualifiers should be considered when using the data. The quality of the data generated during this investigation is acceptable for the preparation of technically-defensible documents.

SCREENING CRITERIA EVALUATION

The analytical results from sampling were compared with screening criteria appropriate for use in evaluating properties for human health and ecological risk in this region of the U.S. These criteria are used for site "screening" to help identify areas, contaminants, and conditions at a site that may require further evaluation. Screening criteria are not de facto cleanup standards and should not be applied as such. Detected concentrations above screening criteria may warrant additional evaluation of the potential risks to human or ecological health by contaminants depending on the intended use of the subject property.

Based on the Site's current and historical land use as an industrial property, and for the purposes of this Phase II ESA, continued industrial or commercial land use was assumed. Assumed current and future receptors include occupational workers, construction workers, and excavation workers. Additionally, due to the low potential yield, groundwater was assumed to not be used for beneficial use (i.e. human consumption).

Residential screening values were not used in this evaluation. Typical risk pathways included in residential screening values include consumption of groundwater, incidental ingestion of soil, and indoor air vapor intrusion. Based on ERM's understanding of potential future residential development of the property, none of these risk pathways are potentially complete for the following reasons:

- As discussed above, beneficial use of groundwater is not likely to include consumption due to low yield of the water bearing zone;
- ERM understands that potential future on-site residences (if constructed) would be unlikely to include ground level gardens or yards, making ingestion of soil an incomplete pathway; and
- ERM understands that potential future on-site residences (if constructed) would not be constructed at ground level, making vapor intrusion an incomplete pathway.

The Intake Basin sediments, storm water, and tailrace water do have the potential to impact aquatic organisms; therefore, ecological risk and applicable human health risk screening criteria were included for these media.

The screening criteria used in this screening evaluation include the following:

- ODEQ Risk-Based Concentrations (RBCs) from the Risk-Based Decision Making (RBDM) for the Remediation of Petroleum-Contaminated Sites (ODEQ, 2003) and RBC Table Update, June 2012, for Occupational, Construction Worker, and Excavation Worker receptors.
 - o Exposure pathways applied include:
 - Soil Soil Ingestion/Dermal Contact/Inhalation, Volatilization to Outdoor Air, Vapor Intrusion to Buildings;
 - Groundwater Volatilization to Outdoor Air, Vapor Intrusion to Buildings, and Groundwater in Excavations.
- National Recommended Water Quality Criterion (NRWQC), Aquatic Life Criteria Tables 20 and 33A and Human Health Criteria Table 40, approved by EPA on 17 October 2011.
 - This includes both human health risk through consumption of organisms, and freshwater Ambient Water Quality Criteria (AWQC) (acute and chronic exposure).
- Sediment Bioaccumulation Levels provided in ODEQ Guidance for Assessing Bioaccumulative Chemical of Concern in Sediment, Updated 3 April 2007.
 - Receptors include:
 - Birds, mammals, and fish (as individual and population);
 - Humans (general, and subsistence).

The detections of metals in soil, and storm water and tailrace solids samples were also compared to the ODEQ default background concentrations for metals in Oregon (ODEQ, 2002). Metals concentrations detected in Intake Basin sediment were compared to the freshwater background levels provided in the Sediment Bioaccumulation Guidance (ODEQ, 2007). Screening criteria are not considered exceeded when detected concentrations are equal to or below established regional background levels.

Each of the analytical data summary tables listed above in Section 4.2 show the most stringent of the applicable screening criteria, as well as

available background levels, to allow for a conservative screening of detected constituents.

If constituents were detected at concentrations exceeding the most stringent screening level value (SLV), they are highlighted orange in Tables 5 through 13. Exceeding constituents are then compared to the specific exposure pathways/scenarios/receptors identified above in a separate table. This allows for a more detailed understanding of site risk and should be coupled with an understanding of the Site's potential exposure pathway conceptual site model. Additionally, screening level exceedance quotients (EQs) were calculated to aid in qualifying, or prioritizing, areas with detected constituents above the referenced screening criteria. Screening level EQs are calculated using the following equation:

 $Screening \ Level \ EQ = \frac{Detected \ Constituent \ Concentration}{Screening \ Criteria}$

There is no stead-fast rule or guidance in qualifying detected concentrations using screening level EQs. Knowledge of the contaminant properties, site conditions, frequency of detection, background levels, typical industrial concentrations, and other lines of evidence need to be considered as well.

The screening results by constituent suite, grouped by the sample media are presented in the following sections below.

Upland Soil, Storm Water Solids, and Tailrace Solids

Tables 5 and 7 summarize the upland soil and storm water and tailrace solids analytical data, respectively. Samples with orange highlighting have detections exceeding the lowest SLV, and these concentrations are further evaluated in Tables 6 and 8 (for upland soil and storm water and tailrace solids, respectively).

During collection of storm water and tailrace solids samples, floating oil was observed in several of the storm water features and tailraces.

<u>Metals</u>

Figure 5 shows the analytical results for metals in upland soil, and storm water and tailrace solids. Arsenic was detected at concentrations above SLVs at three upland soil sampling locations (F18-01, F38-01 and F42-01) and two tailrace solids locations (TR1-01 and TR2-02/03 [composite]). The regional background concentration for arsenic is 7 milligrams per kilogram (mg/kg). The concentration of arsenic in all soil and solids

samples can be reasonably considered within background levels, with the exception of three samples.

The sample from F18-01(near Building 18 Mill O) contained an arsenic concentration of 50.2 mg/kg and a screening level EQ of 29.5.

Solids samples from Tailraces 1 and H also contained arsenic at concentrations above the most stringent SLVs. Samples TR01-1 and TR2-02/03 (composite) resulted in concentrations of 17.9 (EQ of 10.5) and 7.6 mg/kg (EQ of 4.5), respectively.

Two locations detected elevated concentrations of lead above the SLVs: F21-01 (Building 22/Millwright Shop, near a former fuel storage area) at a concentration of 1,480 mg/kg (EQ = 1.9), and F38-01 (Building 38 /Welding Shop, near a former fuel UST) at a concentration of 3,300 mg/kg (EQ = 4.1).

<u>TPH</u>

Figure 6 shows the analytical results for TPH in upland soil, and storm water and tailrace solids. There were no detected concentrations above the screening criteria.

VOCs

Figure 7 shows the analytical results for VOCs in upland soil, and storm water and tailrace solids. There were no detected concentrations above the screening criteria.

<u>SVOCs</u>

Figure 8 shows the analytical results for SVOCs in upland soil, and storm water and tailrace solids. One sample, F07-01 (near the 4th Street rail spur), contained concentrations of three polycyclic aromatic hydrocarbon (PAH) constituents above the SLVs. These were benzo(a)anthracene, benzo(a)pyrene, and benzo(b)fluoranthene at concentrations of 11, 2.9, and 5.2 mg/kg, respectively. The highest screening level EQ was for benzo(a)pyrene at 10.7.

Benzo(a)pyrene was also detected in one of the tailrace solids samples (TR-02) above screening criteria. The concentration was 0.46 mg/kg (EQ = 1.7). Tailrace 2 is located between two rail spurs.

<u>PCBs</u>

Figure 9 shows the analytical results for PCBs in upland soil, and storm water and tailrace solids. Two storm water system solids samples contained concentrations of total PCBs above the most stringent SLV: Pump Station 2 (PS2-01) and the Pipe Tunnel (F53-01) has PCB concentrations of 2.9 (EQ = 4.1) and 0.89 mg/kg (EQ = 1.3), respectively.

Dioxins/Furans

Figure 10 shows the analytical results for dioxins / furans in upland soil, and storm water and tailrace solids. Dioxins and furans were detected at all of the storm water and tailrace solids locations sampled. All but two samples exceeded the screening criteria with calculated 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity equivalency quotients (TEQs) for the locations with SLV exceedances ranging from 18.63 (EQ = 1.2) to 84.04 nanograms per kilogram (ng/kg) (EQ = 5.6). The highest concentrations were located in Tailrace 2 (at sample TR2-02) and the Pipe Tunnel (sample F53-01); both are locations where there is potential for contaminant accumulation in the solids.

Asbestos

One upland soil sample location and all solids samples collected within the storm water system and tailraces were analyzed for the presence of asbestos. The upland location, F18-01 (Building 18 Mill O), and storm water and tailrace solids analyzed did not have detectable concentrations of asbestos.

Storm Water, Tailrace Water, Groundwater and Seeps

Table 9 summarizes the storm water and tailrace water analytical data and provides the initial screening of detected concentrations to the most conservative applicable SLV. Samples with orange highlighting have detections exceeding the lowest SLV and these results are further evaluated in Table 10.

Table 11 summarizes the groundwater and seep analytical data and provides the initial screening of detected concentrations to the most conservative applicable SLV. There were no detected concentrations of constituents above the screening criteria in any groundwater or seep water samples.

During groundwater sampling, a sheen was observed on the purge water from TD-01, no abnormal odors or sheen were observed at F-38-01.

Additionally, during collection of storm water and tailrace water samples, floating oil was observed in several of the storm water features and tailraces.

Metals

Figure 11 shows the analytical results for metals in storm water, tailrace water, groundwater and seeps. Several metals were detected in storm water and tailrace water at concentrations above the most stringent screening criteria, including arsenic, cadmium, copper, and zinc. Arsenic was detected in surface water collected from Tailrace 2 (sample TR2-02) at a concentration of 3.5 micrograms per Liter (μ g/L) (EQ = 1.7). The detected concentration of cadmium in this sample was 1.14 μ g/L (EQ = 1.0). Copper was detected at concentrations above the most stringent screening criteria at the Pipe Tunnel, Pump Stations 1 and 2, and Tailraces 2 and H. The concentrations at these locations ranged from 20.8 (EQ = 1.2) to 84.6 μ g/L (EQ = 7.1) (Pump Station 2).

Samples from the Pipe Tunnel (sample F53-01) and Pump Station 2 (sample PS2-01) revealed concentrations of zinc in water above the most stringent SLV. The sample collected from Pump Station 2 contained a concentration of 119 μ g/L (EQ = 1.1) and the duplicate sample collected at the Pipe Tunnel had a concentration of 833 μ g/L (EQ = 7.6).

<u>TPH</u>

Figure 12 shows the analytical results for TPH in storm water, tailrace water, groundwater and seeps. There were no detected concentrations above the screening criteria.

VOCs

Figure 13 shows the analytical results for VOCs in storm water, tailrace water, groundwater and seeps. There were no detected concentrations above the screening criteria.

<u>SVOCs</u>

Figure 14 shows the analytical results for SVOCs in storm water, tailrace water, groundwater and seeps. There were no detected concentrations above the screening criteria.

Intake Basin Sediment

Table 12 summarizes the Intake Basin sediment analytical data and provides the initial screening of detected concentrations to the most conservative applicable SLV. Samples with orange highlighting have detections exceeding the lowest SLV and these concentrations are further evaluated in Table 13.

<u>Metals</u>

Figure 15 shows the analytical results for metals in Intake Basin sediments. There were no detected concentrations above the screening criteria.

<u>SVOCs</u>

Figure 16 shows the analytical results for SVOCs in Intake Basin sediments. There were no detected concentrations above the screening criteria.

PCBs

Figure 17 shows the analytical results for PCBs in Intake Basin sediments. There were no detected concentrations above the screening criteria.

<u>Dioxins/Furans</u>

Figure 18 shows the analytical results for dioxins/ furans in Intake Basin sediments. Dioxins/furans were detected at all of the Intake Basin sediment sampling locations. All sediment samples contained calculated TCDD TEQ concentrations exceeding the most stringent screening criteria. Table 13 provides a detailed summary of the resulting TEQ values for each sediment sample location and compares these to human health and ecological screening values. Calculated TEQs range from 0.211 to 6.78 ng/kg. For human health, screening level EQs ranged from 23.2 to 6,162. For ecological health, screening level EQs ranged from 1.0 to 130.4.

Reporting Limits

For some of the chemicals analyzed, the laboratory reporting limits (RLs) or method detection limits (MDLs) were higher than the screening criteria. These occurrences are highlighted grey in the tables; these are only presented in the summary tables when the constituent was detected in other samples within the media group, otherwise they are not presented in the tables. Reasons for laboratory RLs or MDLs above the screening

criteria include: the limits of the selected analytical methods, sample matrix interference, high concentrations of target or non-target compounds, and laboratory equipment calibration. This does not necessarily indicate a screening criterion exceedance. The analytical methods selected were typical for conducting environmental site assessments and were previously reviewed by the ODEQ.

CONCLUSIONS AND RECOMMENDATIONS

The previous sections of this memorandum present the findings of this Phase II ESA of the Site. Conclusions from this ESA are presented below:

Upland Soil

In general, while there are a few specific areas with contaminants detected at concentrations above applicable SLVs, the upland soils at the Site appear to pose low risk to human health, assuming a future use of the site for commercial or industrial purposes.

Arsenic concentrations detected at F18-01(near Building 18 Mill O) resulted in a screening level EQs of 29.5 and are slightly elevated from background² (7 mg/kg). This sample was collected from the crawl space below Building 18 and consisted of fill material that appeared to be demolition debris, containing bricks and pieces of metal. Given the limited extent of this fill material and the lack of apparent source of arsenic, this result does not appear to merit additional investigation at this time.

Lead concentrations exceeding the SLVs were observed at F21-01 (Building 22/Millwright Shop, near a former fuel storage area) and F38-01 (Building 38 /Welding Shop, near a former fuel UST). The screening level EQs for these samples are 1.9 and 4.1, respectively. These observed lead concentrations may be associated with the historical use of these areas for fuel storage. However, the TPH concentrations in these samples were below the applicable screening criteria, indicating that potential impacts of historical petroleum releases, if any, from these former fuel storage areas are limited. Based on the low screening criteria EQs and limited potential source areas, the concentrations of lead in soil do not appear to merit additional investigation at this time.

Several PAHs were detected above SLVs at F07-01 (near the 4th Street rail spur). The highest screening level EQ was for benzo(a)pyrene at 10.7. PAHs are commonly associated with treated railroad ties and other rail activity. If rail use is planned in the future use of the Site, and this rail spur is to remain intact, the presence of these compounds at these concentrations likely does not necessitate further assessment.

One upland soil sample, F18-01 (Building 18 Mill O), was analyzed for the presence of asbestos to evaluate possible impacts related to ongoing

² Default Background Concentrations for Metals in Oregon Soils: ODEQ, 2002. Memo from Toxicology Workgroup.

salvage and demolition activities. Asbestos was not detected in this sample.

Soil and groundwater samples collected from the Truck Dump area (TD-01 and TD-02) contained TPH at concentrations slightly below the screening criteria. During the sampling activities significant soil staining and sheen on the groundwater were observed. The detected TPH may be a result of historical release(s) from the former fuel and oil storage in this area. Due to the limited number of sampling locations (two) and significant depth of soil, there is a potential that impacted soil and groundwater may be present at concentrations exceeding applicable screening criteria within this area.

Storm Water and Tailrace Water and Solids

In general, the characterization of associated solids and water detected common industrial storm water contaminants and while some of these were above SLVs, none were at concentrations indicating significant concern.

Arsenic was detected in Tailraces 1 and H solids at concentrations above the most stringent SLVs and slightly above the regional background concentration (7 mg/kg). The highest screening level EQ of 10.5 was at Tailrace 1. Due to the low screening level EQs and low exceedance of background, these results do not appear to merit additional investigation at this time.

One PAH (Benzo[a]pyrene) was detected in one of the tailrace solids samples above screening criteria at TR2-02. The corresponding screening level EQ was 1.7. Tailrace 2 is situated between two rail spurs and this contaminant may be present due to the presence of treated rail ties or the presence of asphalt throughout the facility. Due to the low screening level EQ, this detected concentration does not necessitate additional assessment.

PCBs were detected in two storm water system solids samples above the most stringent SLVs: Pump Station 2 (sample PS2-01) and the Pipe Tunnel (sample F53-01) with screening level EQs of 4.1 and 1.3, respectively. Floating oil was observed in several of the storm water features and tailraces during sample collection activities. The PCB impacts may be due to historical releases of PCB-containing oil from electrical infrastructure at the site, or the recently reported release of oils to the storm water system during current salvage operations. The detected concentrations are low and do not appear to warrant additional investigation at this time.

Dioxins/furans were detected in storm water and tailrace samples at concentrations above the SLVs, but within typical background ranges. A September 2011 Washington Department of Ecology study of urban surface soil from various Seattle neighborhoods found calculated TCDD TEQ concentrations in urban soils ranged from 1.66 to 114.65 ng/kg with an average concentration of 19.08 ng/kg³. The TCDD TEQ results for storm water and tailrace solids ranged from 1.79 to 84.0 ng/kg and are within the range of background concentrations. These concentrations present a low risk given the ubiquitous nature of these persistent contaminants in the environment. There are numerous regional sources of dioxins/furans and the concentrations found may be the result of atmospheric deposition.

Samples of solids collected from the storm water system and tailraces were analyzed for the presence of asbestos to evaluate if ongoing salvage and demolition activities may be causing impacts to the Site. Asbestos was not detected in the storm water and tailrace solids samples.

Arsenic and cadmium concentrations detected in tailrace water have low screening level EQs and do not appear to warrant additional assessment.

Copper and zinc were detected in the storm water and tailrace water samples with screening level EQs ranging from 1.1 to 7.6. The metals are found in typical roofing materials which may be in use at the site and are commonly identified in industrial storm water systems. Additionally, it was noted during water sample collection that metal cuttings/shavings from salvaging operations were present in the storm water system structures. These metals cuttings/shavings could be contributing to detected metals concentrations. Due to the low screening level EQs, common source materials, and potential contributions from metal debris in the sampling locations, the detected concentrations of copper and zinc in storm water and tailrace water do not appear to warrant additional assessment.

Groundwater and Seeps

Groundwater and seep sampling at the site did not indicate any detected concentrations above applicable SLVs for the analyzed constituents.

³ Urban Seattle Area Soil Dioxin and PAH Concentrations Initial Summary Report, Washington Department of Ecology, Publication no. 11-09-049, September 2011.

Intake Basin Sediment

All constituents analyzed in the Intake Basin sediment samples were either not detected, or detected at concentrations below the applicable SLVs except for dioxins/furans. Dioxins/ furans were detected at all of the Intake Basin sediment sampling locations with calculated TCDD TEQs ranging from 0.211 to 6.78 ng/kg. A 2008 study undertaken in Puget Sound was completed to assess non-urban background concentrations of dioxins/furans in surface sediment to support the Dredged Material Management Program (DMMP). Results of the study found calculated TEQ concentrations in surface sediment ranged from 0.01 to 11.90 ng/kg^4 . As part of the 2008 EPA Site Inspection (SI) completed by Ecology and Environment, sediment samples were collected downstream, adjacent to, and upstream of the Site in order to evaluate possible impacts to the river from Site operations. The results of dioxin/ furan analysis indicated calculated TEQs ranging up to 2.16 ng/k g. Concentrations of dioxins/ furans detected in Intake Basin sediment are considered within background ranges.

As discussed above, there are numerous regional sources of dioxins/furans and the concentrations detected in Intake Basin sediment may be the result of atmospheric deposition and upstream sources. Since this area of the Site was used to channel water for operational use, and the facility has not discharged waste water or storm water to this area, it is unlikely the Site is the source of these contaminants in sediment.

Recommendations

Based on the preceding information, ERM recommends the following:

- Development of a conceptual site model (CSM) to support future development plans for the Site. This will identify relevant exposure pathways and exposure scenarios and will further assist in defining areas and conditions of potential risk to future human health and ecological receptors.
- Removal and proper management of accumulated solids from the storm water system, tailraces, and other site features prior to acquiring the property. Best management practices (BMPs) for maintenance of storm water conveyance systems should be followed including catch basin and line cleaning.

⁴ Puget Sound Sediment PCB and Dioxin 2008 Survey, Dredged Material Management Program (DMMP), September 11, 2008.

- Work with ODEQ to ensure ongoing salvaging activities are completed following industry BMPs to reduce the potential for impacts to the environment (i.e. releases of contaminants to upland soil, the storm water system, tailraces, surface water, or adjacent sediments).
- Additional investigation, including soil and groundwater sampling, in the area near the Truck Dump to confirm that former fuel and oil storage activities have not impacted the Site.
- Development of a Soil Management Plan (SMP) for the site. A SMP will provide information to site managers and developers regarding the management of soil during and after site development. The SMP will also identify procedures if contaminated soil is encountered during future site development activities, including material handling (segregating, stockpiling, covering), characterization, and disposal or reuse options.

Upon completion of a conceptual site model, areas with detected contaminants should be screened against criteria applicable to the proposed or intended land use. Additionally the limits of contamination in shallow soils should be further defined to aid the evaluation of potential land use and/or limit the amount of material that may need to be removed and disposed of off-site. These tasks may help alleviate potential schedule delays and limit costs associated with Site development.

FIGURES

Figure 1 Site Location

- Figure 2 Site Layout
- Figure 3 Conceptual Sampling Strategy
- Figure 4 Phase II Sample Locations
- Figure 5 Metals Concentrations in Upland Soil, Storm Water Solids, and Tailrace Solids
- Figure 6 TPH Concentrations in Upland Soil, Storm Water Solids, and Tailrace Solids
- Figure 7 VOC Concentrations in Upland Soil, Storm Water Solids, and Tailrace Solids
- Figure 8 SVOC Concentrations in Upland Soil, Storm Water Solids, and Tailrace Solids
- Figure 9 PCB Concentrations in Upland Soil, Storm Water Solids, and Tailrace Solids
- Figure 10 Dioxin/Furan Concentrations in Upland Soil, Storm Water Solids, and Tailrace Solids
- Figure 11 Metals Concentrations in Storm Water, Tailrace Water, Groundwater, and Seeps
- Figure 12 TPH Concentrations in Storm Water, Tailrace Water, Groundwater, and Seeps
- Figure 13 VOC Concentrations in Storm Water, Tailrace Water, Groundwater, and Seeps
- Figure 14 SVOC Concentrations in Storm Water, Tailrace Water, Groundwater, and Seeps
- Figure 15 Metals Concentrations in Intake Basin Sediments
- Figure 16 SVOC Concentrations in Intake Basin Sediments
- Figure 17 PCB Concentrations in Intake Basin Sediments
- Figure 18 Dioxin/Furan Concentrations in Intake Basin Sediments

TABLES

- Table 1 Areas of Potential Environmental Concern
- Table 2 Sampling Rationale and Approach
- Table 3 Sampling Matrix
- Table 4 Boring Log Summary
- Table 5 Upland Soil Analytical Results
- Table 6 Analytes with Detections above Screening Criteria, Upland Soil
- Table 7 Storm Water and Tailrace Solids Analytical Results
- Table 8 Analytes with Detections above Screening Criteria, Storm Water and Tailrace Solids
- Table 9 Storm Water and Tailrace Water Analytical Results
- Table 10 Analytes with Detections above Screening Criteria, Storm Water and Tailrace Water
- Table 11 Groundwater and Seep Analytical Results
- Table 12 Intake Basin Sediment Analytical Results
- Table 13 Analytes with Detections above Screening Criteria, Intake Basin Sediment

APPENDICES

- Appendix A Phase II ESA Conceptual Approach
- Appendix B Reference Documents
- Appendix C Boring Logs
- Appendix D Laboratory Analytical Reports
- Appendix E Data Validation Report

Figures

File: F:\Projects\0170026_Metro Blue Heron\GIS\Report Figures\Fig 01 Site Location.mxd

Legend

Blue Heron Site Boundary

Figure 1 Site Location Phase II ESA Blue Heron Site Oregon City, Oregon

- Blue Heron Site Boundary
- Oregon City Storm Sewer Line
- 🛞 Manhole

- G Oregon City Outfall (active)
- 🖣 Outfall (abandoned)
- Tailrace (Approximate)

Figure 2 Site Layout Phase II ESA Blue Heron Site Oregon City, Oregon

Phase II ESA Sample Locations

- Soil, Fill, and Groundwater (if present)
- △ Seep
- Stormwater and Solids

- 📕 Intake Basin
- Tailrace Solid Locaiton for Compositing
- V Tailrace Solid and Water Location
- Blue Heron Site Boundary
- Oregon City Storm Sewer Line
- ⊗ Manhole

- G Oregon City Outfall (active)
- Gutfall (abandoned)
- Tailrace (Approximate)

Figure 4 Phase II Sample Locations Phase II ESA Blue Heron Site Oregon City, Oregon

Metals Results

Detected above applicable screening criteria Detected below applicable screening criteria

- Not Detected
- Not Analyzed

Sample Type

- Colored by Result
- Soil Sample
- Storm Water Solids Sample
- \Diamond Tailrace Solids Sample

- Blue Heron Site Boundary
- Oregon City Storm Sewer Line
- 🛞 Manhole
- Tailrace (Approximate)

- All results given in mg/kg.

- Result shown for only samples with exceedance of SLV.
- Screening criteria are derived from the Oregon DEQ Risk Based Decision Making for the Remediation of Petroleum Impacted Sites for Occupational, Construction Worker, and Excavation Worker receptors.
- Screening criteria are not considered exceeded when results are equal to or below established regional background levels.
- EQ = Exceedance Quotient
- SLV = Screening Level Value
- bgs = Below ground surface

Figure 5 Metals Concentrations in Upland Soil, Storm Water Solids, and Tailrace Solids Phase II ESA Blue Heron Site Oregon City, Oregon

TPH Results

Detected above applicable screening criteria Detected below applicable screening criteria

- Not Detected
- Not Analyzed

Sample Type

- Colored by Result
- ✤ Soil Sample
- Storm Water Solids Sample
- ♦ Tailrace Solids Sample
- Blue Heron Site Boundary
- ---- Oregon City Storm Sewer Line
- 🛞 Manhole
- Tailrace (Approximate)

Notes:

- All results given in mg/kg. - Result shown for only samples with exceedance of SLV.
- Screening criteria are derived from the Oregon DEQ Risk Based
- Decision Making for the Remediation of Petroleum Impacted Sites for Occupational, Construction Worker, and Excavation Worker receptors.
- TPH = Total Petroleum Hydrocarbons
- SLV = Screening Level Value

Figure 6 TPH Concentrations in Upland Soil, Storm Water Solids, and Tailrace Solids Phase II ESA Blue Heron Site Oregon City, Oregon

VOC Results

Detected above applicable screening criteria

- Detected below applicable screening criteria
- Not Detected
- Not Analyzed

Sample Type

- Colored by Result
- ✤ Soil Sample
- Storm Water Solids Sample
- ♦ Tailrace Solids Sample
- Blue Heron Site Boundary
- ---- Oregon City Storm Sewer Line
- 🛞 Manhole
- Tailrace (Approximate)

Notes:

- All results given in mg/kg.
- Result shown for only samples with exceedance of SLV.
- Screening criteria are derived from the Oregon DEQ Risk Based Decision Making for the Remediation of Petroleum Impacted Sites for Occupational, Construction Worker, and Excavation Worker receptors.
- VOC = Volatile Organic Compound
- SLV = Screening Level Value

Figure 7 VOC Concentrations in Upland Soil, Storm Water Solids, and Tailrace Solids Phase II ESA Blue Heron Site Oregon City, Oregon

SVOC Results

Detected above applicable screening criteria

- Detected below applicable screening criteria
- Not Detected
- Not Analyzed

Sample Type

- Colored by Result
- ✤ Soil Sample
- Storm Water Solids Sample
- \Diamond Tailrace Solids Sample

Notes:

Blue Heron Site Boundary

— Tailrace (Approximate)

⊗ Manhole

— Oregon City Storm Sewer Line

- All results given in mg/kg.
- Result shown for only samples with exceedance of SLV.
- Screening criteria are derived from the Oregon DEQ Risk Based Decision Making for the Remediation of Petroleum Impacted Sites for Occupational, Construction Worker, and Excavation Worker receptors.
- SVOC = Semivolatile Organic Compound
- EQ = Exceedance Quotient
- bgs = Below ground surface
- SLV = Screening Level Value

Figure 8 SVOC Concentrations in Upland Soil, Storm Water Solids, and Tailrace Solids Phase II ESA Blue Heron Site Oregon City, Oregon

PCB Results

Detected above applicable screening criteria Detected below applicable screening criteria

- Not Detected
- Not Analyzed

Sample Type

- Colored by Result
- Soil Sample
- Storm Water Solids Sample
- Tailrace Solids Sample

- Blue Heron Site Boundary
- ---- Oregon City Storm Sewer Line 🛞 Manhole

- PCB = Polychlorinated Biphenyl - EQ = Exceedance Quotient

receptors.

Notes:

- bgs = Below ground surface

- All results given in mg/kg.

- Result shown for only samples with exceedance of SLV.

- SLV = Screening Level Value

— Tailrace (Approximate)

Figure 9 PCB Concentrations in Upland Soil, Storm Water Solids, and Tailrace Solids Phase II ESA Blue Heron Site Oregon City, Oregon

Environmental Resources Management 1001 SW 5th St, Suite 1010 Portland, Oregon 97204

- Screening criteria are derived from the Oregon DEQ Risk Based Decision Making for the Remediation of Petroleum Impacted Sites for Occupational, Construction Worker, and Excavation Worker

Dioxins and Furans Results

Detected above applicable screening criteria Detected below applicable screening criteria

- Not Detected
- Not Analyzed

Sample Type

- Colored by Result
- Soil Sample
- Storm Water Solids Sample
- \Diamond Tailrace Solids Sample
- Blue Heron Site Boundary
- Oregon City Storm Sewer Line
- \otimes Manhole
- Tailrace (Approximate)

Notes:

- All results given in ng/kg.
 Result shown for only samples with exceedance of SLV.
 Screening criteria are derived from the Oregon DEQ Risk Based Decision Making for the Remediation of Petroleum Impacted Sites for Occupational, Construction Worker, and Excavation Worker
- receptors.
 TEQ (ND=0) = Calculated toxic equivalency quotient, not detected isomer concentrations equal to 0.
 TEQ (ND=1/2 DL) = Calculated toxic equivalency quotient, not detected isomer concentrations equal to half the detection limit.
- EQ = Exceedance Quotient
 bgs = Below ground surface
 SLV = Screening Level Value

Figure 10 Dioxin/Furan Concentrations in Upland Soil, Storm Water Solids, and Tailrace Solids Phase II ESA Blue Heron Site Oregon City, Oreaon

Metals Results

Detected above applicable screening criteria Detected below applicable screening criteria Not Detected

Not Analyzed

Sample Type

- Colored by Result
- Groundwater Sample
- \triangle Seep Sample
- 🖶 Storm Water Sample
- Tailrace Water Sample

Notes:

Blue Heron Site Boundary

— Tailrace (Approximate)

🛞 Manhole

— Oregon City Storm Sewer Line

- All results given in μ g/L.
- Result shown for only samples with exceedance of SLV.
- Storm water/Tailrace water: screening criteria are derived from the Aquatic Life Criteria Tables 20 and 33A and Human Health Criteria Table 40, approved by EPA on 17 October 2011.
- Groundwater/Seeps: screening criteria are derived from Oregon DEQ
- Risk Based Decision Making for the Remediation of Petroleum Impacted Sites for Occupational and Construction Worker receptors, June 2012.
- EQ = Exceedance Quotient
- SLV = Screening Level Value

Figure 11 Metals Concentrations in Storm Water, Tailrace Water, Groundwater, and Seeps Phase II ESA Blue Heron Site Oregon City, Oreaon

Total Petroleum Hydrocarbon Results

Detected above applicable screening criteria

- Detected below applicable screening criteria
- Not Detected
- Not Analyzed

Sample Type

- Colored by Result
- Groundwater Sample
- \triangle Seep Sample
- 🖶 Storm Water Sample
- Tailrace Water Sample

Notes:

Blue Heron Site Boundary

— Tailrace (Approximate)

🛞 Manhole

— Oregon City Storm Sewer Line

- All results given in $\mu g/L$. - Result shown for only samples with exceedance of SLV.
- Storm water/Tailrace water: screening criteria are derived from the Aquatic Life Criteria Tables 20 and 33A and Human Health Criteria Table 40, approved by EPA on 17 October 2011.
- Groundwater/Seeps: screening criteria are derived from Oregon DEQ Risk Based Decision Making for the Remediation of Petroleum Impacted Sites for Occupational and Construction Worker receptors, June 2012.
- TPH = Total Petroleum Hydrocarbons
- EQ = Exceedance Quotient
- SLV = Screening Level Value

Figure 12 TPH Concentrations in Storm Water, Tailrace Water, Groundwater, and Seeps Phase II ESA Blue Heron Site Oregon City, Oreaon

Volatile Organic Compound Results

Detected above applicable screening criteria Detected below applicable screening criteria

- Not Detected
- Not Analyzed

Sample Type

- Colored by Result
- Groundwater Sample
- \triangle Seep Sample
- 🖶 Storm Water Sample
- Blue Heron Site Boundary
- Oregon City Storm Sewer Line
- 🛞 Manhole
- Tailrace (Approximate)
- Tailrace Water Sample

Notes:

- All results given in $\mu g/L$.
- Result shown for only samples with exceedance of SLV.
- Storm water/Tailrace water: screening criteria are derived from the Aquatic Life Criteria Tables 20 and 33A and Human Health Criteria Table 40, approved by EPA on 17 October 2011.
- Groundwater/Seeps: screening criteria are derived from Oregon DEQ Risk Based Decision Making for the Remediation of Petroleum Impacted Sites for Occupational and Construction Worker receptors, June 2012.
- VOC = Volatile Organic Compound
- EQ = Exceedance Quotient
- SLV = Screening Level Value

Figure 13 VOC Concentrations in Storm Water, Tailrace Water, Groundwater, and Seeps Phase II ESA Blue Heron Site Oregon City, Oreaon

Semivolatile Organic Compound Results

- Detected above applicable screening criteria
- Detected below applicable screening criteria
- Not Detected
- Not Analyzed

- Sample Type
- Colored by Result
- Groundwater Sample
 - \triangle Seep Sample
 - Storm Water Sample

Blue Heron Site Boundary

- Oregon City Storm Sewer Line
- 🛞 Manhole
- Tailrace (Approximate)
- Tailrace Water Sample

Table 40, approved by EPA on 17 October 2011.

- All results given in $\mu g/L$.

Notes:

Groundwater/Seeps: screening criteria are derived from Oregon DEQ - Risk Based Decision Making for the Remediation of Petroleum Impacted Sites for Occupational and Construction Worker receptors, June 2012.

- Result shown for only samples with exceedance of SLV.

- SVOC = Semivolatile organic compound
- EQ = Exceedance Quotient
- SLV = Screening Level Value

- Storm water/Tailrace water: screening criteria are derived from the Aquatic Life Criteria Tables 20 and 33A and Human Health Criteria

Figure 14 SVOC Concentrations in Storm Water, Tailrace Water, Groundwater, and Seeps Phase II ESA Blue Heron Site Oregon City, Oreaon

- Screening criteria are derived from Sediment Bioaccumulation Levels provided in ODEQ Guidance for Assessing Bioaccumulative Chemical of Concern in Sediment, Updated April 3, 2007
- Screening criteria are not considered exceeded when results are equal to or below established regional background levels.

Figure 15 Metals Concentrations in Intake Basin Sediments Phase II ESA Blue Heron Site Oregon City, Oregon

- Screening criteria are derived from Sediment Bioaccumulation Levels provided in ODEQ Guidance for Assessing Bioaccumulative Chemical of Concern in Sediment, Updated April 3, 2007
- SVOC = Semivolatile organic compounds

Figure 16 SVOC Concentrations in Intake Basin Sediments Phase II ESA Blue Heron Site Oregon City, Oregon

- Screening criteria are derived from Sediment Bioaccumulation Levels provided in ODEQ Guidance for Assessing Bioaccumulative Chemical of Concern in Sediment, Updated April 3, 2007
- PCB = Polychlorinated biphenyl

Figure 17 PCB Concentrations in Intake Basin Sediments Phase II ESA Blue Heron Site Oregon City, Oregon

- Screening criteria are derived from Sediment Bioaccumulation Levels provided in ODEQ Guidance for Assessing Bioaccumulative Chemical of Concern in Sediment, Updated April 3, 2007
- Please see Table 13 for screening criteria evaluation.

Figure 18 Dioxin/Furan Concentrations in Intake Basin Sediments Phase II ESA Blue Heron Site Oregon City, Oregon

Tables

Feature No.	Feature Name	Date and Size	Area of Environmental Concern	Description of Possible Source	Media Potentially Impacted (Sediment, Soil, Storm water, Surface Water, or Groundwater)	Potential Constituents of Interest	Proposed Phase II Sampling to Evaluate (see Table 2)
1	Blue Heron Paper Office Area	1967 105 x 140	North Parking Lot	Former vehicle repair garage and service station 1943-1956 and Tire Sales in 1959; fuel Tanks and hydraulic systems	Soil, Groundwater	Petroleum hydrocarbons, Solvents, PCBs	3 - Soil/Fill 4 - Groundwater (if present)
			Elevator, mechanical room.	Hydraulic system	Soil, Groundwater	Petroleum hydrocarbons, PCBs	3 - Soil/Fill 4 - Groundwater (if present)
2	Water Filter Plant - Settling Basin and Pump House	1953 37 x 105 PH	Second Floor Transformer (2), filtration system ASTs, Basement Pump room	Electrical systems, Chemical storage, petroleum, Metals, Sodium Bromide, Sodium Hypochlorite, Alum	Storm water, and Sediment	Petroleum hydrocarbons, PCBs, Metals, Asbestos	1 -Storm Water / Waste Water System 2 - Tailraces
2a	Fire Hall - Annex	1981 37 x 20	None	N/A	N/A	N/A	N/A
3	Filter Control Building	1965 41 x 65	None	N/A	N/A	N/A	N/A
4	Fire Hall	1981 37 x 45	None	N/A	N/A	N/A	N/A
5	Office and First Aid Building	1965 41 x 47	None	N/A	N/A	N/A	N/A
6	Guard Shack		None	N/A	N/A	N/A	N/A
7	4th Street Building (covered platform south)		Loading platform	Hydraulic systems	Storm water and Sediment	Petroleum hydrocarbons, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
8	4th Street Building (covered platform west)		None	N/A	N/A	N/A	N/A
9	Warehouse No. 3 (Rail Car Loading)	1913 40 x 127	Basement	Elevator, 10k gallon Mineral Oil AST NW Exterior, Hydraulic systems	Soil, Groundwater	Petroleum hydrocarbons, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
10	No. 3 Finishing Building	1913 54 x 125 (basement)	Basement	Hydraulic systems	Soil, Groundwater	Petroleum hydrocarbons, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
11	Mill "B" Warehouse (No. 2 Finishing Building)	1913 54 x 125	None	N/A	N/A	N/A	N/A
12	Number "2" Paper Machine	1913 43 x 185	Basement	Hydraulic systems, Dye, Radiation Source	Soil, Fill, Groundwater, Storm water, and Sediment	Petroleum hydrocarbons, PCBs, Metals	1 -Storm Water / Waste Water System 2 - Tailraces
13	Number "3" Paper Machine	1913 58 x 185	Basement	Hydraulic systems, Dye, Transformers, Radiation Source	Soil, Fill, Groundwater, Storm water, and Sediment	Petroleum hydrocarbons, PCBs, Metals	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present) 5 - Seeps

Feature No.	Feature Name	Date and Size	Area of Environmental Concern	Description of Possible Source	Media Potentially Impacted (Sediment, Soil, Storm water, Surface Water, or Groundwater)	Potential Constituents of Interest	Proposed Phase II Sampling to Evaluate (see Table 2)
	Sub Station - North	48 x 53	Second Floor	Transformer	Waste water	Petroleum hydrocarbons, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
14	Sub Station - Southwest	30 x 43	Second Floor	Transformers	Waste water	Petroleum hydrocarbons, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
14	Sub Station - Southeast	20 x 57	Second Floor	Transformers	Waste water	Petroleum hydrocarbons, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
	Chemical and Tote Storage		First Floor	Felt Wash, Slimicide, Caustic, Kerosene, Hydraulic systems	Soil, Fill, Groundwater, Storm water, and Sediment	Petroleum hydrocarbons, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
15	Butler Building (equipment. storage)	81 x 83	None	N/A	N/A	N/A	N/A
	West	46 x 66					1 Champ Waton / Wasta Waton
	West-center	20 x 44					Sustem
16	Fast-center	35 x 58	Drivoway and Pail Spur	Former UST (not previous sampled), Ties	Soil Fill Croundwater	Arsenic, Copper, Chromium,	2 Tailracos
10	East	40 x 55	Diveway and Kan Spur	and spills	Soli, Fili, Groundwater	SVOCs.	3 - Soil/Fill 4 - Groundwater (if present)
17	3rd Street Building (Covered Shipping Area)	1960 50 x 110	Rail Spur	Ties and spills	Soil, Fill, Groundwater	Arsenic, Copper, Chromium, SVOCs.	1 -Storm Water / Waste Water System 2 - Tailraces
18	Mill "O" Lab Mill "O" Conference Room	1918, 78 x 160, Canopy to west	Basement	Fill and water under building	Soil Fill Groundwater	Petroleum hydrocarbons, PCBs,	1 -Storm Water / Waste Water System 2 - Tailraces
10	Nill O Craft and		Dasement	Thi and water under building	Soli, Thi, Groundwater	Metals, Asbestos	2 Coil/Fill
	Mill "O" Raw Material Storage	1918 83 x 83					4 - Groundwater (if present)
19	Carpenter Shop	1901 70 x 99	Former Wool Carbonizing Area, West Transformer Storage Area	Acid storage, Dyes, Transformers (exterior)	Soil, Fill, Groundwater	Metals (chromium, copper), Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present)
20	Pipe Shop	1988 45 x 60	None	N/A	N/A	N/A	N/A
21	Millwright Shop	1962 55 x 80	Main floor, ground surface	Former potential UST (not previous sampled) , and former petroleum ASTs for boiler system.	Soil, Fill, Groundwater	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present)
22	Auto Shop	1960 40 x 63 Main floor, ground surface Form		Former boiler system. Former Dye House	Soil, Fill, Groundwater	Metals (chromium, copper)	1 -Storm Water / Waste Water System 2 - Tailraces

Feature No.	Feature Name	Date and Size	Area of Environmental Concern	Description of Possible Source	Media Potentially Impacted (Sediment, Soil, Storm water, Surface Water, or Groundwater)	Potential Constituents of Interest	Proposed Phase II Sampling to Evaluate (see Table 2)
23	Mill "B" Storage - West			N/A	N/A	N/A	N/A
24	Mill "B" Storage - East	60 x 240 (Former Oregon City Woolen	None	N/A	N/A	N/A	N/A
25	Mill "O" Storage - Interior	Mill Buildings)	i toite	N/A	N/A	N/A	N/A
26	Mill "O" Storage - Exterior			N/A	N/A	N/A	N/A
27	South Substation (Electric Center)	1956-1969 30 x 60	Entire substation	Transformers (14)	Soil, Fill, Groundwater	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present)
28	Recovery Boiler	1056 1060 83 v 120	Second Floor	Boiler	Waste water	Metals	1 -Storm Water / Waste Water System 2 - Tailraces
29	Mill "G" Boiler Plant	1990-1909 63 X 120	Second Floor	Boilers (6), High density Stock and brightening tower to south, Boiler Chemicals	Waste water	Metals	1 -Storm Water / Waste Water System 2 - Tailraces
	Mill "H"		Second Floor	Transformer (1) NW corner, Radiation Source	Waste water	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
30	Mill "H" TMP Area	1956-1969 100 x 132	Second Floor	Hydraulic systems, Hazardous waste storage area, Sodium Hydrosulfite, Sulfuric Acid,	Waste water	Petroleum, PCBs, Solvents, Metals	1 -Storm Water / Waste Water System 2 - Tailraces
	Mill "H" DeInk Area		SE corner roof	Transformer (1)	Storm water	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
31	TMP Reject Refining and Screening	1970 70 x 75	W center wall, Tailrace	Transformer (1) W center wall, Fill and	Soil, Fill, Groundwater, Sediment,	Petroleum PCBs Metals Ashestos	1 -Storm Water / Waste Water System
51	Refiner Line No. 4	1977 25 x 55	under building	water under building	Surface Water	renoleuni, rebs, means, risbestos	2 - Tailraces
32	Addition No. 1 Paper Machine	1979 25 x 70 1917 43 x 203	Fill and water under building	Historical uses, Fill and water under building, Radiation Source	Soil, Fill, Groundwater, Waste water	Petroleum, PCBs, Metals	1 -Storm Water / Waste Water System 2 - Tailraces 5 - Seeps
33	No. 1 Save-All Cleaners & Desiccator (Screen Room & DeInk)	1917 78 x 78	First Floor, Basement	Transformer (2) SE Corner, Elevator, two pulp ASTs to east. Fill and water under building, laurylphosphonic acid, Surfactant, Oil, Filler, Felt Wash, Slimicide, Caustic, Kerosene, Urea.	Soil, Fill, Groundwater, Waste water	Petroleum, PCBs, , Metals	1 -Storm Water / Waste Water System 2 - Tailraces
34	Bleach Plant (De-Ink Plant)	1960 54 x 57	First Floor, Basement	Transformer (1) NW Corner, 64k Fuel Oil AST SE corner exterior, Bleach Tower and Caustic Tower to N. ext., Fill and water under building	Soil, Fill, Groundwater, Waste water	Petroleum, PCBs, Metals	1 -Storm Water / Waste Water System 2 - Tailraces

Feature No.	Feature Name	Date and Size	Area of Environmental Concern	Description of Possible Source	Media Potentially Impacted (Sediment, Soil, Storm water, Surface Water, or Groundwater)	Potential Constituents of Interest	Proposed Phase II Sampling to Evaluate (see Table 2)
35	Rewind Building	1962 30 x 70 c, 17 x 42 n, 24 x 24 s	First Floor, Basement	Hi Density Stock AST to N exterior. Caustic and bleach ASTs to south. Fill and water under building	Soil, Fill, Groundwater, Waste water	Petroleum, PCBs, Metals	1 -Storm Water / Waste Water System 2 - Tailraces
36 	Mill "E" Maintenance Shops Mill "E" Receiving and Store Room Mill "E" No. 5 & 6 TMP Refiner Lines Mill "E" Mill Offices Weld Shop	130 x 57	First Floor, Water beneath building	Transformer (1) NE ext. Corner and SW corner. Oil Room NW Corner. Former debarker and chipper for pulp manufacturing. Water from intake basin under building. Hydraulic systems. Former UST (not previous sampled) on south side of Weld Shop. Radiation Source	Soil, Fill, Groundwater, Sediment, Surface Water	Petroleum, PCBs, Solvents, Metals, Asbestos	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present)
39	Sulfite Plant (Mill C)	65 x 115	Basement	Process waste, Sodium Bisulfite.	Soil, Fill, Groundwater, Waste water	Sulphur, pH,	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present). 5 - Seeps
40	DIG (Digester Building)	32 x 102	Ground floor Exterior, Basement	Petroleum AST east exterior	Soil, Fill, Groundwater, Waste water	Sulphur, pH,	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present) 5 - Seeps
41	No. 4 Save-All		Basement	Process waste (Adjacent to former Boiler Building)	Soil, Fill, Groundwater, Waste water	Metals	1 -Storm Water / Waste Water System 2 - Tailraces
42	No. 4 Paper Machine	1927 72 x 302	Basement	Transformer (1) E wall, Hydraulic systems, Elevator, Radiation Source	Soil, Fill, Groundwater, Waste water	Petroleum, PCBs, Metals	1 -Storm Water / Waste Water System 2 - Tailraces
42a	No. 4 Paper Machine	1927 67 x 80	Basement	Transformer (1) S wall., Elevator, Hydraulic systems, chemical storage east exterior, laurylphosphonic acid, Surfactant, Oil, Filler, Felt Wash, Slimicide, Caustic, Kerosene, Silicate, Sulfuric Acid, Corrosion inhibitor, Dye, Radiation Source	Soil, Fill, Groundwater, Waste water	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
43	No. 4 Paper Addition	1977 25 x 96	Basement	Hydraulic systems	Soil, Groundwater, Waste water	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
44	No. 4 Finishing Room & Warehouse - South	1924 36 x 67	First Floor	Hydraulic systems, former chemical storage	Soil, Groundwater, Waste water	Petroleum, PCBs, Solvents, Metals	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present)
45	No. 4 Finishing Room & Warehouse - Central	1924 67 x 202	First Floor	Elevator	Soil, Groundwater, Waste water	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces

Feature No.	Feature Name	Date and Size	Area of Environmental Concern	Description of Possible Source	Media Potentially Impacted (Sediment, Soil, Storm water, Surface Water, or Groundwater)	Potential Constituents of Interest	Proposed Phase II Sampling to Evaluate (see Table 2)
46	No. 4 Finishing Room & Warehouse - North		First Floor	Hydraulic systems	Soil, Groundwater, Waste water	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
47	Shipping Shed	59 x 80	First Floor	Hydraulic systems	Soil, Groundwater, Waste water	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present)
48	North Substation		Ground surface	Transformers (11)	Soil, Groundwater, Waste water	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
49	Deink ONG Pulper (Mill B)	1928 66 x 143	Current chemical storage	Chemicals collected during plant deconstruction. Laurylphosphonic Acid, Surfactant, Hydrogen Peroxide, Caustic, Silicate, Radiation Source.	Waste water	Petroleum hydrocarbons, PCBs, Metals, Asbestos	1 -Storm Water / Waste Water System 2 - Tailraces
50	Deink ONG Repulper	80 x 100	Current chemical storage	Chemicals collected during plant deconstruction. Used Oil.	Waste water	Petroleum hydrocarbons, PCBs, Metals, Asbestos	1 -Storm Water / Waste Water System 2 - Tailraces
51	Chip and Sawdust Silo	35 x 67	None	N/A	N/A	N/A	N/A
52	Dam		None	N/A	N/A	N/A	N/A
	Pipe Tunnel		Entire Tunnel	Facility drainage	Storm water, and sediment	Petroleum, PCBs, Solvents, Metals, Dioxins/Furans, Asbestos	1 -Storm Water / Waste Water System
53	DeMiz Building		Main Floor	Hydraulic systems, Chemical storage (Defoamer)	Waste water		1 -Storm Water / Waste Water System 2 - Tailraces
	#1 Pump Station		Sediment trap	Storm water, and sediment	Storm water, and sediment	Petroleum, PCBs, Solvents, Metals, Dioxins/Furans, Asbestos	1 -Storm Water / Waste Water System
54	Clarifier Pump House		Entire Building	Hydraulic systems, Electrical systems	Storm water	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
55	Clarifier		Bottom of Clarifier	Facility drainage	Storm water, and sediment	Petroleum, PCBs, Solvents, Metals, Dioxins/Furans, Asbestos	1 -Storm Water / Waste Water System
56	Sulfuric Acid AST		Exterior	Paint, Sulfuric Acid	Storm water	Lead	1 -Storm Water / Waste Water System 2 - Tailraces
57	Aboveground Storage Tanks	Exterior		Paint, Hydrogen Peroxide, Caustic, Sulfuric Acid, Silicate	Storm water	Lead	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present)

Feature No.	Feature Name	Date and Size	Area of Environmental Concern	Description of Possible Source	Media Potentially Impacted (Sediment, Soil, Storm water, Surface Water, or Groundwater)	Potential Constituents of Interest	Proposed Phase II Sampling to Evaluate (see Table 2)
	Site-wide		Buildings and ground surface	Facility drainage	Surface, Fill, Groundwater, Storm water	Asbestos, Metals (Lead, Zinc)	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present)
	Intake Basin		Sediment	Upstream Sources	Sediment	Petroleum, PCBs, Solvents, Metals, Asbestos	6 - In-Water Sediment
	Tailrace 1		North of No. 1 Paper Machine	Facility leaks and groundwater drainage	Storm water, groundwater, soil, and sediment	Petroleum, PCBs, Solvents, Metals, Dioxins/Furans, Asbestos	2 - Tailraces
	Tailrace 2		Below No. 3 Paper Machine	Facility leaks and groundwater drainage	Storm water, groundwater, soil, and sediment	Petroleum, PCBs, Solvents, Metals, Dioxins/Furans, Asbestos	2 - Tailraces
	Mill H Tailrace		Below Mill H	Facility leaks and groundwater drainage	Storm water, groundwater, soil, and sediment	Petroleum, PCBs, Solvents, Metals, Dioxins/Furans, Asbestos	2 - Tailraces
	#2 Pump Station		Sediment trap	Facility drainage	Storm water, and sediment	Petroleum, PCBs, Solvents, Metals, Dioxins/Furans, Asbestos	1 -Storm Water / Waste Water System
	Former Fuel Oil AST (319,200 gallons)		None	N/A	N/A	N/A	N/A
	Oil Dock		None	N/A	N/A	N/A	N/A
	Truck Dump	1968 37 x 108	Ground surface, Basement	Transformers (3) Fuels ASTs, Hydraulics	Soil, Fill, Groundwater	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present)
	Rail Spurs		Ground surface, subsurface	Ties, spills	Soil, Fill, Groundwater	Arsenic, Copper, Chromium, SVOCs	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present)
	Former MgO AST		Ground surface, subsurface	Previously used as a Fuel AST for Sulfate Plant Boilers	Soil, Fill, Groundwater	Petroleum	1 -Storm Water / Waste Water System 2 - Tailraces
	Water Supply well Near 56	Near SW corner of former MgO AST	None	N/A	N/A	N/A	N/A

Information sources: Site Observations, Sanborn Maps, Historical Aerial Photographs, Historical Topographic Maps, City Directories, IRI Mill Layout Drawing, Waste Water Treatment System Drawing, Major Bulk Chemicals, Waste & Oil Mill Locations, Chemical and Raw Material Storage Map

No.	Media/Feature	Type of Sample	Purpose	COIs	Sample Location(s)	Notes
1	Storm Water / Waste Water	Bedded Sediment	Evaluate potential releases of COIs site wide.	- Metals, including mercury (at some locations) - TPH - SVOCs - PCBs - Dioxins/Furans - Asbestos	- Pump Station #1 - Pump Station #2 - Pipe Tunnel - Clarifier	Composite samples; collect multiple depth intervals (where available) to evaluate recent and historical releases; collection of samples dependent upon presence of sufficient sediment to sample and safe access to allow sampling.
	System	Water	Evaluate potential releases of COIs site wide; evaluate potential releases from site via storm water.	- Metals, including hexavalent chromium and mercury (at some locations) - TPH - VOCs - SVOCs	- Pump Station #1 - Pump Station #2 - Pipe Tunnel - Clarifier	Sample of standing water in collection structure.
2	Tailracas	Bedded Sediment	Evaluate potential releases from site that are not being captured by storm water system.	- Metals, including mercury - TPH - SVOCs - PCBs - Dioxins/Furans - Asbestos	- Mill H Tailrace - Tailrace #1 - Tailrace #2	Collect multiple depth intervals(where available) to evaluate recent and historical releases; collection of samples dependent upon presence of sufficient sediment to sample and safe access to allow sampling.
2	Tailaces	Water	Evaluate potential releases from site that are not being captured by storm water system.	- Metals, including hexavalent chromium and mercury (at some locations) - TPH - VOCs - SVOCs	- Mill H Tailrace - Tailrace #1 - Tailrace #3	Collect samples of surface/standing water within tailraces.
3	Soil / Fill	Solid	Evaluate potential releases from discrete site features; evaluate fill characteristics.	- Metals (some locations) - TPH - VOCs - SVOCs (some locations) - PCBs (some locations) - Asbestos (some locations)	Locations related to current and former tanks, transformers (in use and decommissioned), fill, and railroad spurs (ballast and other sources).	Sample where possible; soil/fill may not be present at all locations.
4	Groundwater	Water	Evaluate potential releases from discrete site features; evaluate groundwater quality both on-site and upgradient.	- Metals - TPH - VOCs - SVOCs	Locations related to current and former tanks, transformers (in use and decommissioned), fill, and railroad spurs (ballast and other sources).	Sample if groundwater encountered during soil sampling; groundwater not expected to be observed in shallow soil/fill.
5	Seeps	Water	Evaluate groundwater quality both on-site and upgradient.	- Metals - TPH - VOCs - SVOCs	Locations throughout site (No. 1 Paper Machine and Bleach Plant, east of Sulphate Plant by RR tracks).	Sample where possible; some seeps may not have sufficient flow to allow sampling.
6	Intake Basin Sediment	Bedded Sediment	Evaluate sediment quality on submerged portion of subject parcel.	- Metals - SVOCs - PCBs - Dioxins/Furans	Various locations in in-take basin.	Surface and subsurface samples.

COIs - Constituents of interest

SVOCs - Semi-volatile organic compounds

VOCs - Volatile organic compounds

PCBs - Polychlorinated biphenyls

	Proposed			Sample Depth	Sample Type		Metals (As, Cd, Cr, Cu, Ni, Pb, Zn)	Hg	Cr VI	ТРН	VOCs	SVOCs	PCB Aroclors	Dioxins/ Furans	Asbestos
Site Feature	Sample Location	Sampling Method / Notes	Sample ID	(feet bgs or feet bss)	Grab/ Composite	Media	EPA 6020A	EPA 7470A/7471B	EPA 7195/ 7191A	NWTPH-Dx, Gx	EPA 8260C	EPA 8270D	EPA 8082A	EPA 8290A	ALS Laboratory Internal Method ENV004
Building 01 UST	F01-01	Direct push drill rig.	F01-01-9.5-10.5	9.5-10.5	Grab	Soil/Fill	Х			Х	Х	Х			
Building 01 UST	F01-02	Hand auger.	F01-02-1-2	1-2	Grab	Soil/Fill	Х			Х	Х				
Building 01 UST	F01-03	Not completed, no indication of UST from GPR results.													
	TD 01	Direct push drill rig.	TD-01-4.5-6	4.5-6	Grab	Soil/Fill				Х	Х	Х	Х		
Truck Dump	110-01	Temp well with peristaltic pump.	TD-01-GW-090712	3-8	Grab	Groundwater	Х			TPH-g only ²	Х	Х			
	TD-02	Direct push drill rig.	TD-02-6.5-8	6.5-8	Grab	Soil/Fill				X	Х	Х	Х		
Building 07/Spur	F07-01	Hand auger.	F07-01-0.5-1.0	0.5-1.0	Grab	Soil/Fill	Х			Х	Х	Х	Х		
Building 16 17/Spur	E14 01	Hand august direct nuch drill rig	F16-01-3-4	3-4	Grab	Soil/Fill	Х			Х	Х	Х			
building 10-17/3pui	110-01	nand auger, direct push drini rig.	F16-01-15.5-16.5	15.5-16.5	Grab	Soil/Fill	Х			Х	Х	Х			
Building 16/UST	F16-02	Not completed, railroad ballast/shallow bedrock.													
Building 18 Mill O	F18-01	Hand auger.	F18-01-0-0.5	0-0.5	Grab	Soil/Fill	Х			Х	Х		Х		Х
Building 19	F19-01	Hand auger.	F19-01-0.5-1.5	0.5-1.5	Grab	Soil/Fill	Х			Х	Х		Х		
Building 22/Millwright Shop	F21-01	Hand auger.	F21-01-0.5-2.0	0.5-2.0	Grab	Soil/Fill	Х			Х	Х				
Building 28/Frmr Dye Shop	F28-01	Not completed, subsurface concrete structure.													
Building 38-Welding/UST	F38-01	Direct push drill rig.	F38-01-Soil-5-10	5-10	Grab	Soil/Fill	Х			Х	Х		Х		
Junuing 30-Weidnig/ 051	130-01	Temp well with peristaltic pump.	F38-01-GW-090712	5-10	Grab	Groundwater	Х			Х	Х				
Building 42/Chemical Storage	F42-01	Hand auger.	F42-01-1.5-2.5	1.5-2.5	Grab	Soil/Fill	Х			Х	Х				
Building 46/Shipping Shed	F47-01	No recovery, railroad ballast/shallow bedrock.													
Feature 57/Fuel AST	F57-01	Not completed, shallow bedrock.													
		Hand tools.	F53-01-0-0.5-091412	0-0.5	Grab	Storm Water Solids	Х			Х		Х	Х	Х	Х
Pipe Tunnel	F53-01	Direct/grab.	F53-01-SW-091412	Storm Water	Grab	Storm Water	Х		Х	Х	Х	Х			
		Direct/grab.	DUP-01-SW-091412	Storm Water	Grab	Storm Water	Х		Х	Х	Х	Х			
Pump Station #1	PS1-01	Hand tools.	PS1-01-0-0.5-091412	0-0.5	Grab	Storm Water Solids	X			X		Х	Х	Х	Х
-		Direct/grab.	PS1-01-SW-091412	Storm Water	Grab	Storm Water	X		Х	X	X	X			
Pump Station # 2	PS2-01	Hand tools.	PS2-01-Shallow	0-0.5	Grab	Storm Water Solids	X			X		X	X	X	X
		Direct/grab.	PS2-01-SW-090812	Storm Water	Grab	Storm Water	X			X	X	X			
Clarifier	F55-01	Hand tools.	F55-01-0-0.5-091412	0-0.5	Grab	Storm Water Solids	X	X		X		X	X	X	X
		Direct/grab.	F55-01-SW-091412	Storm Water	Grab	Storm Water	X	X	Х	X	X	X	X	X	×
Tailrace 1	TR1-01	Hand tools.	TR1-01-0-0.5-091512	0-0.5	Grab	Tailrace Solids	X	X	Y	X	×	X	X	X	X
		Direct/grab.	1KI-01-SW-091412	Surface Water	Grab	Tailrace Water	X	X	X	X	X	X	v	v	v
Tailrace 2	TP2 02 TP2 02	Hand tools.	TR2-SHALLOW	0-0.5	Composite	Tailrace Solids	X	X Y		X		X	X Y	X	X
Talliace 2	TR2-02,TR2-03	Direct/creck ¹	TP2 01 GW 001412	Curface Water	Grab	Tailrace Water	x	~	v	X	Y	× ×	Λ	~	Λ
		Direct/grab.	TPU 01 0 0 5		Giab	Tailrace Water	x	v	А	X	Λ.	X	v	v	v
Tailrace H	TRH-01	Direct/grab	TRH_01_SW_091412	Surface Water	Grab	Tailrace Water	X	X	X	X	Y	X	Λ	~	~
	F33-01	Direct/grab.	F33-01-SP-091512	Seep Water	Grab	Seep Water	X	~	~	X	X	X			
Bleach Plant Seep	F34-01	Direct/grab.	F34-01-SP-091512	Seep Water	Grab	Seep Water	X			X	X	X			
Upgradient Seep	F42-03	Direct/grab.	F42-03-SP-091512	Seep Water	Grab	Seep Water	Х			Х	Х	Х			
Possible Tailrace H Seep	F32-01	Not completed, no access.		· ·		· ·									
Paper Machine 3 Seep	F13-01	Not completed, no access.													
Paper Machine 3 Seep	F13-02	Not completed, no access.													
	IB-01	Ponar-type grab sampler.	IB-01-0-6inch-091412	0-0.5	Grab	Intake Basin Sediment	Х					Х	Х	Х	
	10-01	Vibracore.	IB-01-2.5-3.0-091412	2.5-3.0	Grab	Intake Basin Sediment	Х					Х	Х	Х	
	IB-02	Ponar-type grab sampler.	IB-02-0-6inch-091412	0-0.5	Grab	Intake Basin Sediment	Х					Х	Х	Х	
Intake Basin		Vibracore.	IB-02-2.5-3.0-091412	2.5-3.0	Grab	Intake Basin Sediment	Х					Х	Х	Х	
		Ponar-type grab sampler.	IB-03-0-6inch-091412	0-0.5	Grab	Intake Basin Sediment	X					Х	X	X	
	IB-03	Vibracore.	IB-03-1.5-2-091412	1.5-2	Grab	Intake Basin Sediment	X					X	X	X	
		Vibracore.	IB-03-3.5-4.0-091412	2.5-3.0	Grab	Intake Basin Sediment	Х					Х	Х	Х	
1				Total Number of Samples			38	8	7	32	25	33	21	15	9

Notes & Key:

¹ Sample mis-labeled as "TR2-01" on COC and in laboratory reports. ² Sample not analyzed for TPH-d; sample volume unavailable due to slow recharge rate. bgs = below ground surface bss = below sediment surface EPA = United States Environmental Protection Agency GPR = Ground-penetrating radar NWTPH = Northwest Method Total Petroleum Hydrocarbons PCB = Polychlorinated biphenyls SVOCs = Semivolatile organic compounds TPH = Total petroleum hydrocarbons TPH-d = Diesel-range total petroleum hydrocarbons TPH-g = Gasoline-range total petroleum hydrocarbons UST = Underground storage tank VOCs = Volatile organic compounds

Notes & Key (continued):

As = Arsenic Cd = Cadmium Cr = Chromium Cr VI = Hexavalent chromium Cu = Copper Hg = Mercury Ni = Nickel Pb = Lead Zn = Zinc

Soil and groundwater sample location Storm water and storm water solids sample location Seep water sample location Surface water and solids sample location Intake basin sediment sample location

Table 3 Sampling Matrix Phase II Environmental Site Assessment Blue Heron Mill Site and Main Office Building

Table 4 Boring Log Summary Phase II Environmental Site Assessment Blue Heron Mill Site and Main Office Building

					Soil Data Summary					
P. day	Total Depth	Drilling	Soil I	nterval			Field Sc	reening Results		
Boring	of Boring	Method	(feet bgs o	of feet bss)	USCS Soil Type	Odor	Sheen	Discoloration	PID Results	
	(leet bgs)		From	То					(ppm)	
F01-01	10.5	Hand Auger	0.0	0.25	Asphalt.	no	no	no		
		Direct Push	0.25	3.0	SILTY GRAVEL WITH SAND (GM): grey, fine gravel, fine to coarse sand, well-graded, angular, dry. Fill	20	20	20		
			0.25	5.0	material.	110	110	110		
					POORLY-GRADED SAND (SP): dark brown, fine, poorly-graded, slightly moist, increasing to moist with				3	
			3.0	10.5	depth.	no	no	no	0	
					At 9.5 reet bgs, as above except with faminations of sitty sand.				0	
E01_02	2	Hand Auger	0.0	0.25	Aenhalt	no	10	no	1.0	
101-02	-	Thank Thuger	0.25	0.20	Crushed rock. Grev. fine to coarse sand and fine gravel	no	no	no		
			0.20	0.0	WELL-GRADED SAND WITH GRAVEL (SW): brown, fine to medium sand, fine gravel, well-graded.	no	110	110		
			0.5	2.0	moist. Fill material.	no	no	no		
F07-01	1	Hand Auger	0.0	0.25	Asphalt.	no	no	no		
		0	0.25	1.0	SILTY GRAVEL WITH SAND (GM): dark grey, gravel with silt and sand, some wood, hydrocarbon odor,					
			0.25	1.0	slightly moist.	yes	110	110		
F16-01	17.5	Hand Auger	0.0	0.5	Concrete.	no	no	no		
		Direct Push			SILTY SAND (SM): dark brown, fine sand, some fine gravel, slightly moist.				0.9	
			0.5	45.5	Brick fragments at 5 feet bgs.				0.5	
			0.5	15.5	At 8 feet bgs, as above except fine to medium sand, no gravel, moist.	no	no	no	0.9	
					At 12 feet bgs, as above except oraligish-brown.				0.4	
			15.5	16.5	WELL-GRADED GRAVEL (GW): olive grey, fine gravel, some fine to coarse sand, wet	no	no	no	0.5	
					SILTY GRAVEL WITH SAND (GM): olive grey, fine to coarse gravel, fine to coarse sand, well-graded,				-	
			16.5	17.5	dry.	no	no	no	0	
F18-01	0.5	Hand Auger	0.0	0.25	Concrete	no	no	no		
			0.25	0.5	POORLY GRADED SAND (SP): brown, fine sand, some silt, with brick and concrete fragments, dry. Fill	0	no	no		
			0.25	0.5	material.	110	110	110		
F19-01	1.5	Hand Auger	0.0	0.5	Asphalt.	no	no	no		
			0.5	1.5	WELL-GRADED GRAVEL (GW): fine to coarse gravel, few to little fines, very poorly sorted, no staining,	no	no	no		
F01 01	2	II	0.0	0.5	no odor, moist.					
F21-01	2	Hand Auger	0.0	0.5	Aspnait. WELL CRADED SAND (SWI): dark brown modium to yory coarse and coarse gravel poorly sorted po	no	no	no		
			0.5	2.0	odor, no staining, moist	no	no	no		
F38-01	10	Hand Auger	0.0	0.5	Asphalt with multiple lifts	no	no	no		
100 01		Direct Push			WELL-GRADED GRAVEL (GW): dark brown, fine to coarse gravel, cobbles, few clay, few silt, subangular					
			0.5	3.5	to subrounded gravel, poorly sorted, no staining, no odor, moist.	no	no	no	0.1	
					At 2 feet bgs, many 4- to 5-inch diameter cobbles.				1.0	
			3.5	5.0	No recovery due to soft fill with large rocks.	no	no	no		
			5.0	10.0	Fill material. Sand and gravel, medium to very coarse sand, fine to coarse gravel, saturated, dark grey	no	no	ves	3.6	
					staining, no odor. Poor recovery.			,		
F42-01	2.5	Hand Auger	0.0	0.4	Concrete with rebar.	no	no	no		
			0.4	1.0	Fill Material. Kocks and concrete rubble.	no	no	no		
	1.0 2.5 poorly sorted dark staining no odor moist Increased day with denth from few to little					no	no	yes	0.4	
	1				poorry sorred, dark starting, no odor, moist, increased clay with deput noin new to little.		1		1	

Table 4 Boring Log Summary Phase II Environmental Site Assessment Blue Heron Mill Site and Main Office Building

					Soil Data Summary						
Baring	Total Depth	Drilling	Soil I	nterval			Field Sc	reening Results			
Doring	(feet bgs)	Method	(feet bgs	of feet bss)	USCS Soil Type	Odor	Sheen	Discoloration	PID Results		
	(ieee bgs)		From	То					(ppm)		
TD-01	8	Hand Auger	0.0	0.75	Asphalt.	no	no	no			
		Direct Push	0.75	1.5	Fill material. Wood, bricks, ash, sand and gravel, no odor, no staining, dry.	no	no	no	0.2		
			1.5	2.5	CLAYEY SAND (SC): dark brown, very fine to medium sand, some fill material, very poorly sorted, no odor, moist. Small amount of fill.	no	no	no			
			2.5	7.0	WELL-GRADED SAND (SW): grey, fine to medium sand, moderately sorted, no odor, no staining, moist. At 6 feet bgs, as above except with sheen and petroleum odor.	no	no	no	0.1 0.3 0.2		
			7.0	8.0	Clayey SAND (SC), coarse, medium gravel, poorly sorted. At 7.8 feet bgs, as above except fine to coarse, rounded gravel.	yes	yes	yes			
TD-02	9	Hand Auger	0.0	0.5	Asphalt.	no	no	no			
		Direct Push	0.5	1.0	POORLY-GRADED SAND (SP): brown, fine to coarse sand, poorly sorted, no odor, no staining, increased moisture with depth from dry to moist.	no	no	no			
			1.0	6.5	CLAYEY SAND (SC): brown, fine to coarse sand, poorly sorted, no odor, no staining, moist. At 4.0 feet bgs, as above except very fine to medium sand, with trace cobbles.	no	no	no	0.4 0.4 0.5		
			6.5	7.0	SANDY LEAN CLAY (CL): very fine to medium sand, low plasticity, soft, grey staining, petroleum odor, moist.	yes	no	yes			
			7.0	8.0	POORLY-GRADED SAND (SP): very fine to coarse sand, very poorly sorted, grey staining, petroleum odor, moist.	yes	no	yes	74.2		
			8.0	9.0	POORLY-GRADED SAND WITH GRAVEL (SP): brown, fine to coarse sand, fine to coarse gravel, very poorly sorted, grey staining, petroleum odor, moist.	yes	no	yes			
IB-01	3.1	Ponar	0.0	0.4	ORGANIC SOIL (OH): dark brown, with woody debris, no odor, no staining.	no	no	no			
		Vibracore	0.4	3.1	POORLY GRADED SAND WITH SILT (SP): dark brown, fine grain, no odor and no staining. Woody debris at 1.7 feet bgs. Layer of fine sand at 2.5 feet bgs.	no	no	no			
IB-02	3	Ponar	0.0	0.4	ORGANIC SOIL (OH): dark brown, with woody debris, no odor, no staining.	no	no	no			
		Vibracore	0.4	3.0	POORLY GRADED SAND WITH SILT (SP-SM): dark brown, fine sand, no odor, no staining. Layer of woody debris at 1.7 feet bgs. Layer of fine sand at 2.5 feet bgs.	no	no	no			
IB-03	3.3	Ponar	0	0.4	ORGANIC SOIL (OH): dark brown, with woody debris, no odor, no staining.	no	no	no			
		Vibracore	0.4	3.3	POORLY GRADED SAND WITH SILT (SP): dark brown, fine grain, no odor, no staining. Layer of woody debris at 1 foot bgs. Layer of fine grain sand at 1.5 feet bgs.	no	no	no			

Notes:

bgs = below ground surface

bss = below sediment surface

PID = photo-ionization detector

ppm = part per million

USCS = Unified Soil Classification System

	Site Feature	Buildin	g 01 UST	Building 07/Spur	Building 1	6-17 / Spur	Building 18 Mill O	Building 19	Building 22/ Millwright Shop	Building 38-Welding / UST	Building 42/ Chemical Storage	Truck	Dump		
	Location	F01-02	F01-01	F07-01	F10	6-01	F18-01	F19-01	F21-01	F38-01	F42-01	TD-01	TD-02	Mast Concernation	Destand Bedraman
	Sample ID	F01-02-1-2	F01-01-9.5-10.5	F07-01-0.5-1.0	F16-01-3-4	F16-01-15.5-16.5	F18-01-0-0.5	F19-01-0.5-1.5	F21-01-0.5-2.0	F38-01-Soil-5-10	F42-01-1.5-2.5	TD-01-4.5-6	TD-02-6.5-8	Most Conservative	Regional Background
	Sample Date	9/7/12	9/7/12	9/7/12	9/7/12	9/7/12	9/15/12	9/7/12	9/7/12	9/7/12	9/7/12	9/7/12	9/7/12	Screening Criteria	Levels
S	Sample Depth (ft bgs)	1-2	9.5-10.5	0.5-1.0	3-4	15.5-16.5	0-0.5	0.5-1.5	0.5-2.0	5-10	1.5-2.5	4.5-6	6.5-8		
Constituent	CAS Number												•		
Total Metals by EPA Method 6000/7000 S	Series (mg/kg)														
Arsenic	7440-38-2	2.2	1.9	1.4	2	0.9	50.2	4.7	6.5	8.2 J	9.9			1.7	7.0
Cadmium	7440-43-9	0.15	0.27	0.16	0.09	0.19	0.24	0.24	11.1	0.29	1.02			150	1
Chromium	7440-47-3	13.7 J+	18.6 J+	163 J+	15.2 J+	25.8 J+	26.2	18.8 J+	195 J+	17.5 J+	16.3 J+			-	42
Copper	7440-50-8	19.8	20.4	35.1	20.9	32.7	31.9	45.3	225	109 J	206			12000	36
Lead	7439-92-1	36.7	6.5	14	71.2	28.3	53.2	38.7	1480	3300	367			800	17
Nickel	7440-02-0	17.9	26.5	24,4	20.1	16.5	21.2	17.6	172	13.2 J	63.2			6100	38
Zinc Total Batralaum Hudrocarbons (TBH) by	7440-00-0	49.4	133	57.7	04.0	107	118	117	5150	/3.4	381			-	00
Caseline Pange Organics		50	62	11 NI	< 5.0	< 72	57	< 50	57	< 7	٢ 68	< 7	400 NI	13000	
Diesel Range Organics	DRO	52 NI	< 29	2200 NI	< 28	< 33	< 3.7 30 NI	< 280	< 550	50 NI	42 NI	< 7 290 NT	2000 NI	23000	-
Oil Range Organics	RRO	750 NI	< 120	7400 NI	< 120	< 130	210 NI	1700 NI	4600 NI	220 NI	230 NI	1400 NI	9300 NI	40000	-
Volatile Organic Compounds (VOCs) by	v EPA Method 8260C	(mg/kg): Detected Con	npounds Only	7100 11	120	100	210 11	1700 11	1000 11	220 11	250 11	1100 11	5500 11	10000	1
1,2,4-Trimethylbenzene	95-63-6	< 0.023	< 0.024	< 0.22	< 0.023	< 0.026	< 0.022	< 0.022	< 0.022	< 0.026	< 0.025	< 0.025	21	1000	-
1,3,5-Trimethylbenzene	108-67-8	< 0.023	< 0.024	< 0.22	< 0.023	< 0.026	< 0.022	< 0.022	< 0.022	< 0.026	< 0.025	< 0.025	7.5	3100	-
Acetone	67-64-1	< 0.023	< 0.024	< 2.2	< 0.023	0.073	< 0.022	< 0.022	< 0.022	< 0.026	0.034	0.05	< 3	-	-
Benzene	71-43-2	< 0.0056	< 0.0058	< 0.055	< 0.0056	< 0.0064	< 0.0053	< 0.0055	< 0.0055	< 0.0065	< 0.0062	< 0.0061	0.19	1.2	-
Ethylbenzene	100-41-4	< 0.0056	< 0.0058	< 0.055	< 0.0056	< 0.0064	< 0.0053	< 0.0055	< 0.0055	< 0.0065	< 0.0062	< 0.0061	0.25	12	-
Isopropylbenzene (Cumene)	98-82-8	< 0.023	< 0.024	< 0.22	< 0.023	< 0.026	< 0.022	< 0.022	< 0.022	< 0.026	< 0.025	< 0.025	0.53	24000	-
m,p-Xylenes	179601-23-1	< 0.0056	< 0.0058	< 0.055	< 0.0056	< 0.0064	< 0.0053	< 0.0055	< 0.0055	< 0.0065	< 0.0062	< 0.0061	12	19000	-
Naphthalene	91-20-3	< 0.023	< 0.024	7.7	< 0.023	< 0.026	< 0.022	< 0.022	< 0.022	< 0.026	< 0.025	< 0.025	2.4	-	-
n-Propylbenzene	103-65-1	< 0.023	< 0.024	< 0.22	< 0.023	< 0.026	< 0.022	< 0.022	< 0.022	< 0.026	< 0.025	< 0.025	3.1	-	-
o-Xylene	95-47-6	< 0.0056	< 0.0058	< 0.055	< 0.0056	< 0.0064	< 0.0053	< 0.0055	< 0.0055	< 0.0065	< 0.0062	< 0.0061	6.2	19000	-
sec-Butylbenzene	135-98-8	< 0.023	< 0.024	< 0.22	< 0.023	< 0.026	< 0.022	< 0.022	< 0.022	< 0.026	< 0.025	< 0.025	0.45	-	-
Tetrachloroethene (PCE)	127-18-4	< 0.0056	< 0.0058	< 0.055	< 0.0056	< 0.0064	< 0.0053	< 0.0055	0.0061	< 0.0065	< 0.0062	< 0.0061	< 0.075	36	-
Toluene	108-88-3	< 0.0056	< 0.0058	< 0.055	< 0.0056	< 0.0064	< 0.0053	< 0.0055	< 0.0055	< 0.0065	< 0.0062	< 0.0061	0.1	24000	-
2 Matheleonatheleona	Cs) by EPA Method 8.	270D (mg/kg): Detecte	ed Compounds Only	01	< <u>)</u>)	4 26	1	1	1		1	< 0.5	6.6	1	
2-Methylhaphthaiene	91-57-6		< 2.3	21	< 2.3	< 2.6						< 2.5	0.0	-	-
Acenanbthene	83-32-9		< 2.3	32	< 2.3	< 2.0 < 2.6						< 2.5	< 2.5	19000	
Acenaphthylene	208-96-8		< 23	0.75 i	< 2.3	< 26						< 25	< 2.5	-	
Anthracene	120-12-7		< 2.3	18	< 2.3	< 2.6						< 2.5	< 2.5	93000	-
Benz(a)anthracene	56-55-3		< 2.3	11	< 2.3	< 2.6						< 2.5	< 2.5	2.7	-
Benzo(a)pyrene	50-32-8		< 2.3	2.9	< 2.3	< 2.6						< 2.5	< 2.5	0.27	-
Benzo(b)fluoranthene	205-99-2		< 2.3	5.2	< 2.3	< 2.6						< 2.5	< 2.5	2.7	-
Benzo(g,h,i)perylene	191-24-2		< 2.3	0.55 j	< 2.3	< 2.6						< 2.5	< 2.5	-	-
Benzo(k)fluoranthene	207-08-9		< 2.3	1.5 j	< 2.3	< 2.6						< 2.5	< 2.5	27	-
Chrysene	218-01-9		< 2.3	9.2	< 2.3	< 2.6						< 2.5	< 2.5	250	-
Dibenz(a,h)anthracene	53-70-3		< 2.3	0.22 j	< 2.3	< 2.6						< 2.5	< 2.5	0.27	-
Dibenzofuran	132-64-9		< 2.3	21	< 2.3	< 2.6						< 2.5	< 2.5	-	-
Diethyl Phthalate	84-66-2		0.13 j	0.15 j	< 2.3 U	< 2.6 U						0.14 j	0.16 j	-	-
Dimethyl Phthalate	131-11-3		< 2.3	< 2.2	< 2.3	< 2.6						< 2.5	0.63 j	-	-
Fluoranthene	206-44-0		< 2.3	70	0.091 j	< 2.6						< 2.5	< 2.5	8900	-
Fiuorene	86-/3-/ 103 30 F		× 2.3	33	× 2.3	× 2.6						× 2.5	× 2.5	12000	-
Naphthalana	01 20 3		< 2.3	0.09 J	< 2.3	< 2.6						< 2.5	2.5	2.7	-
Phenanthrene	91-20-3 85-01-8		< 2.3	10	< 2.5 0.085 i	< 2.0						< 2.5	2.5 0.1 j	23	-
Pyrene	129-00-0		< 23	39	< 23	< 2.0						< 25	< 25	6700	
Polychlorinated Biphenyls (PCBs) by FP	A Method 8082A (mo	r/kg)				2.0		1		I		2.3	. 2.0	0/00	
Aroclor 1016	12674-11-2	0	1	< 0.054			< 0.054	< 0.056		< 0.064		< 0.063	< 0.063	-	-
Aroclor 1221	11104-28-2			< 0.11			< 0.11	< 0.12		< 0.13		< 0.13	< 0.13	-	-
Aroclor 1232	11141-16-5			< 0.054			< 0.054	< 0.056	1	< 0.064		< 0.063	< 0.063	-	-
Aroclor 1242	53469-21-9			< 0.054			< 0.054	< 0.056		< 0.064		< 0.063	< 0.063	-	-
Aroclor 1248	12672-29-6			< 0.054			< 0.054	< 0.056		< 0.064		< 0.063	< 0.063	-	-
Aroclor 1254	11097-69-1			< 0.054			< 0.054	< 0.056		0.088		< 0.063	< 0.063	-	-
Aroclor 1260	11096-82-5			< 0.054			< 0.054	< 0.056		< 0.064		< 0.063	< 0.063	-	-
Total PCBs as Aroclors				< 0.11			< 0.11	< 0.12		0.088		< 0.13	< 0.13	0.7	-
Asbestos by ALS Laboratory Internal Mo	ethod ENV004		1			1	1	1	1	1			1		
Asbestos (total)	1332-21-4						ND								

Table 5

Upland Soil Analytical Results Phase II Environmental Site Assessment Blue Heron Mill Site and Main Office Building

¹ Screening criteria are derived from Oregon DEQ Risk Based Decision Making for the Remediation of Petroleum Impacted Sites for Occupational and Construction Worker receptors, June 2012. Risk Based Decision Making Action Levels are screened among three pathways - Soil Ingestion/Dermal Contact/Inhalation, Volatilization to Outdoor Air, Vapor Intrusion to Buildings

² Default Background Concentrations for Metals in Oregon Soils: DEQ, 2002. Memo from Toxicology Workgroup. Default Background Concentration for Metals. October 28. Media = soil

Screening criteria are not considered exceeded when results are equal to or below established regional background levels.

- = Applicable screening criteria for this constituent are not available.

< = Constituent was not detected above the laboratory MDL or MRL (constituent-dependant). Applicable reporting limit provided.

Bold = The analyte was detected above the applicable reporting limit.

Empty cells = Constituent not analyzed.

ft bgs = feet below ground surface

MDL = Method detection limit

MRL = Method reporting limit

mg/kg = micrograms per kilogram ND = Not detected

ng/kg = nanograms per kilogram

Detected concentration exceeds one or more sceening criteria.
 Analyte not detected, but MDL exceeds one or more screening criteria.

Laboratory Data Qualifiers:

j = The value reported is below the laboratory reporting limit and should be considered an estimate.

ERM Data Qualifiers:

J = Detected sample result qualified as estimated

J+ = Detected sample result qualified as estimated and biased high NJ = Estimated value $% \left[{{{\rm{NJ}}_{\rm{s}}}_{\rm{s}}} \right]$

U = Sample result qualified as nondetected

Table 6 Analytes with Detections above Screening Criteria Upland Soil Phase II Environmental Site Assessment Blue Heron Mill Site and Main Office Building

Constituent of Interest	Cite Teature	Levelier	n Sample ID	Sample Date	Consult Doubh		Regional	Screening Criteria ²					ing Criteria ²					
Constituent of Interest	Site reature	Location	Sample ID		(ft bgs)	Concentration	Background		Inges	tion, Dermal C	ontact, and Inh	alation		Volatilizatio	n to Outdoor	Vapor Intrusion	n into Buildings	
							Levels1	Occup	pational	Construct	ion Worker	Excavatio	on Worker	Occup	ational	Occup	pational	
								SL	EQ	SL	EQ	SL	EQ	SL	EQ	SL	EQ	
Total Metals by EPA Method 60	000/7000 Series (mg/kg)																	
	Building 18 Mill O	F18-01	F18-01-0-0.5	9/15/2012	0-0.5	50.2	7	1.7	29.5	13	3.9	370		-		-		
Arsenic	Building 38-Welding / UST	F38-01	F38-01-Soil-5-10	9/7/2012	5-10	8.2	7	1.7	4.8	13		370		-		-		
	Building 42 / Chemical Storage	F42-01	F42-01-1.5-2.5	9/7/2012	1.5-2.5	9.9	7	1.7	5.8	13		370		-		-		
Land	Building 22 / Millwright Shop	F21-01	F21-01-0.5-2.0	9/7/2012	0.5-2.0	1480	17	800	1.9	800	1.9	800	1.9	-		-		
Leau	Building 38-Welding / UST	F38-01	F38-01-Soil-5-10	9/7/2012	5-10	3300	17	800	4.1	800	4.1	800	4.1	-		-		
Semivolatile Organic Compoun	ds (SVOCs) by EPA Method 8270	D (mg/kg)																
Benz(a)anthracene	Building 07 / Spur	F07-01	F07-01-0.5-1.0	9/7/2012	0.5-1.0	11	-	2.7	4.1	21		590		-		-		
Benzo(a)pyrene	Building 07 / Spur	F07-01	F07-01-0.5-1.0	9/7/2012	0.5-1.0	2.9	-	0.27	10.7	2.1	1.4	59		-		-		
Benzo(b)fluoranthene	Building 07 / Spur	F07-01	F07-01-0.5-1.0	9/7/2012	0.5-1.0	5.2	-	2.7	1.9	21		590		-		-		

Notes:

¹ Default Background Concentrations for Metals in Oregon Soils: DEQ, 2002. Memo from Toxicology Workgroup. Default Background Concentration for Metals. October 28. Media = soil

2 Screening criteria are derived from Oregon DEQ Risk Based Decision Making for the Remediation of Petroleum Impacted Sites for Occupational and Construction Worker receptors, June 2012.
- = Indicates applicable screening criteria for this constituent are not available.

Bold = The analyte was detected above the applicable reporting limit.

EQ = Exceedance quotient

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

SL = Screening level

= Detected concentration exceeds one or more sceening criteria; screening criteria exceeded are shaded.

Screening Level Exceedance Quotient Key:

= Indicates detected concentration exceeds screening criteria by a factor between 1 and 5.

= Indicates detected concentration exceeds screening criteria by a factor between 5 and 10. = Indicates detected concentration exceeds screening criteria by a factor above 10.

	Site Feature		Pipe Tunnel		Clarifier			P	Pump Stations							Ta	ailraces							
	Location		F53-01		F55-01			PS1-01		PS2-	01	-	TR1-01		TR2-02		TR2	-02/03 (comp	osite)		TRH-01			
	Sample ID	TEFs	F53-01-0-0.5-0914	12	F55-01-0-0.5-09	1412	PS1-	-01-0-0.5-091	412	PS2-01-S	hallow	TR	1-01-0-0.5-091	1512	TR2-02-DEI	EP	1	R2-SHALLC	w	Т	RH-01-0-0	.5	Most Conservative	Regional Background
	Sample Date		9/14/12		9/14/12			9/14/12		9/8/1	2		9/15/12		9/8/12			9/8/12			9/15/12		Screening Criteria	Levels
	Sample Depth (ft bgs)		0-0.5		0-0.5			0-0.5		0-0.	5		0-0.5		0.5-1.0			0-0.5			0-0.5			
Constituent	CAS Number																							
Total Metals by EPA Method 6000/	7000 Series (mg/kg)		1		-		1					_											r	T
Arsenic	7440-38-2		6.9		3.8			1.7		3.6			17.9		5.9			7.6			2		1.7	7.0
Cadmium	7440-43-9		1.28		0.81			0.6		0.39	-		7.5		0.61			1.4			0.22		150	1
Chromium	7440-47-3		36.1		22.9			59.2		19.9) J+		175		42.3	J+		31	J+		22.2		-	42
Copper	7440-50-8		210		227			245		105			348		114			190			99.6		12000	36
Lead	7439-92-1		54.9		26.3			159		31.2			717		62.8			57.6			28.1		800	1/
Nickol	7439-97-0		29	_	0.9			60.7		22 5		-	0.47		1.45		-	2.2			0.08		53 6100	38
Zinc	7440-66-6		937		476			349		374	,		360		279			332			147		0100	86
Total Petroleum Hydrocarbons (TP	PH) by NW Methods (mg	/kg)	557		470			54)		574			500		21)		1	332		1	14/		-	00
Gasoline Range Organics	GRO	(75	NI	180	NI		50	NI	120	NI	<	34		23	NI	T	55	NI		19	NI	13000	-
Diesel Range Organics	DRO		4200	NI	6900	NI		8100	NI	230) NI		950	NI	990	NI		2000	NI		2000	NI	23000	-
Oil Range Organics	RRO		14000	NI	15000	NI		17000	NI	1200	0 NI		4200	NI	6400	NI		9100	NI		5200	NI	40000	-
Semivolatile Organic Compounds	(SVOCs) by EPA Method	8270D (n	ng/kg): Detected Cor	npou	inds Only	,	1		-					,		,								1
1,4-Dichlorobenzene	106-46-7		< 1.7		< 3.2		<	3.4		0.31	j	<	1.2		< 4.8		<	12		<	0.54		17	-
2-Methylnaphthalene	91-57-6		< 1.7		< 3.2		<	3.4		1.4	j	<	1.2		< 4.8		<	12		<	0.54		-	-
4-Methylphenol	106-44-5		< 1.7		< 3.2		<	3.4		3.3		<	1.2		< 4.8		<	12		<	0.54		-	-
Acenaphthene	83-32-9		< 1.7		< 3.2		<	3.4		0.4	j	<	1.2		0.34	j	<	12		<	0.54		19000	-
Aniline	62-53-3		< 5.1		< 9.6		<	11		< 9.6		<	3.6		3.5	j		19	j	<	1.7		-	-
Anthracene	120-12-7		< 1.7		< 3.2		<	3.4		< 3.2		<	1.2		0.37	j	<	12		<	0.54		93000	-
Benz(a)anthracene	56-55-3		< 1.7		< 3.2		<	3.4		< 3.2		<	1.2		0.32	j	<	12		<	0.54		2.7	-
Benzo(a)pyrene	50-32-8		< 1.7		< 3.2		<	3.4		< 3.2		<	1.2		0.46	j	<	12		<	0.54		0.27	-
Benzo(b)fluoranthene	205-99-2		< 1.7		< 3.2		<	3.4		< 3.2		<	1.2		0.94	j	<	12		<	0.54		2.7	-
Bis(2-ethylhexyl) Phthalate	117-81-7		7.1		15			19		56			1.6		44		<u> </u>	4.6	j		4.4		150	-
Butyl Benzyl Phthalate	85-68-7		< 1.7		< 3.2		<	3.4		0.5	j	<	1.2		< 4.8		<	12		<	0.54		-	-
Chrysene	218-01-9		< 1.7		< 3.2		<	3.4		< 3.2		<	1.2		0.23	J	<	12		<	0.54		250	-
Dibenzoturan Diatkul Phthalata	132-64-9		< 1.7		< 3.2		<	3.4		0.26		<	1.2		< 4.8	;	<	12		<	0.54		-	-
Dieutyi Phthalate	04-00-2		< 1.7	_	< 3.2			2.4		2.00	,)	È	1.2		0.27	J		0.50	:		0.54		-	-
Di-n-butyl Phthalate	84-74-2		< 1.7		< 3.2		~	3.4		0.51	;		1.2		< 4.8		<	12	J	~	0.54		-	-
Fluoranthene	206-44-0		< 1.7		< 3.2		<	3.4		0.51	j	-	1.2		16	i	Ì	12		<	0.54		8900	
Fluorene	86-73-7		< 1.7		< 3.2		<	3.4		0.34	· ,	<	1.2		0.33	; i	<	12		<	0.54		12000	-
Naphthalene	91-20-3		< 1.7		< 3.2		<	3.4		3.9	,	<	1.2		< 4.8)	<	12		<	0.54		23	-
Phenanthrene	85-01-8		< 1.7		< 3.2		<	3.4		0.7	i	<	1.2		1.3	i	<	12		<	0.54		-	-
Pyrene	129-00-0		< 1.7		< 3.2		<	3.4		0.25	; j	<	1.2		1.5	j	<	12		<	0.54		6700	-
Polychlorinated Biphenyls (PCBs)	by EPA Method 8082A (n	ng/kg)	•																				-	
Aroclor 1016	12674-11-2		< 0.34		< 0.64		<	0.23		< 0.08	1	<	0.24		< 0.12		<	0.29		<	0.11		-	-
Aroclor 1221	11104-28-2		< 0.68		< 1.3		<	0.45		< 0.17		<	0.48		< 0.24		<	0.57		<	0.22		-	-
Aroclor 1232	11141-16-5		< 0.34		< 0.64		<	0.23		< 0.08	1	<	0.24		< 0.12		<	0.29		<	0.11		-	-
Aroclor 1242	53469-21-9		< 0.34		< 0.64		<	0.23		0.49)	<	0.24		< 0.12		<	0.29		<	0.11		-	-
Aroclor 1248	12672-29-6		2.9		< 0.64			0.37		< 0.08	1	<	0.24		< 0.12		<	0.29		<	0.11		-	-
Aroclor 1254	11097-69-1		< 0.34		< 0.64		<	0.23		0.31	-	<	0.24		< 0.12		<	0.29		<	0.11		-	-
Aroclor 1260	11096-82-5		< 0.34		< 0.64		<	0.23		0.08	8	<	0.24		< 0.12		<	0.29		<	0.11		-	-
Total PCBs as Aroclors	1.0000 (2.9		< 1.3	_		0.37		0.88	8	<	0.48		< 0.24		<	0.57		<	0.22		0.70	-
2278 TCDD	a 8290A (ng/kg)	1	< 2.28	II	< 6.41			2.24		< 0.80	4		2.20		< 1.21	II		2 62	IJ		1.08		15.0	1
12378 PoCDD	1/40-01-0	1	3.50	;	< 32.1	II		2.24		< 1.00	± ,	È	2.39	;	2.09	;	È	8.72	;	<u> </u>	0.417	;	15.0	-
123478-HyCDD	39227-28-6	0.1	9 37	j	< 32.1 < 32.1	U	~	11.2		< 4.02	,		616	j	2.09			9.8	j i	<	5 39	J		-
123678-HxCDD	57653-85-7	0.1	54 3	,	< 32.1	U	<	11.2	U	< 4.02	I	1	65.2	J	36.3	J		140	J	<u> </u>	4.81	i	-	-
123789-HxCDD	19408-74-3	0.1	22.1		11.8	i		4.18	i	2.39	i i	1	21.8		9.51		1	17.3		<	5.39	U	-	-
1234678-HpCDD	35822-46-9	0.01	1160		1230	,		580	Ť	38.7	,	1	1340		1230		1	2800			112	-	-	-
OCDD	3268-87-9	0.0003	12200		10200	I		4160	Ť	374		1	12400	T	18900	eĪ	1	48100	eĪ		1810		-	-
2378-TCDF	51207-31-9	0.1	□ 7.2		4.14	i		5.08		3.84	ł	1	6.87	,	8.09	-,	1	9.33	-,	<	1.08	U	-	-
12378-PeCDF	57117-41-6	0.03	9.87	j	< 32.1	Ŭ	<	11.2		< 4.02	2	1	6.6	i	1.52	i	1	4.75	i		1.57	i	-	-
23478-PeCDF	57117-31-4	0.3	46.2		< 32.1	U	<	11.2		< 4.02	2	1	7.71	j	2.02	j	1	4.68	j		1.21	j	-	-
123478-HxCDF	70648-26-9	0.1	211		8.42	j		2.08	j	3.05	i j	1	24.7	ŕ	8.53	,	1	17.1	,		7.22	,	-	-
123678-HxCDF	57117-44-9	0.1	84.4		< 32.1	U	<	11.2	U	1.28	j j		12.7		< 6.05	U		8.85	j		2.01	j	-	-
123789-HxCDF	72918-21-9	0.1	< 16.9		< 32.1		<	11.2		< 4.02	2	<	12		< 6.05		<	14.1		<	5.39	U	-	-

Table 7

Storm Water and Tailrace Solids Analytical Results Phase II Environmental Site Assessment Blue Heron Mill Site and Main Office Building

	Site Feature		Pipe Tunnel		Clarifier				Pump S	Statio	ns			Ta	ailraces			
	Location		F53-01		F55-01			PS1-01			PS2-01		TR1-01	TR2-02	TR2-02/03 (composite)	TRH-01	Most Componenting	Dogional Pasteguound
	Sample ID	TEFs	F53-01-0-0.5-091412	F	55-01-0-0.5-09	1412	PS1	-01-0-0.5-09	91412	P	S2-01-Shallo	w	TR1-01-0-0.5-091512	TR2-02-DEEP	TR2-SHALLOW	TRH-01-0-0.5	Sanooning Critorio ¹	Levels ²
	Sample Date		9/14/12		9/14/12			9/14/12			9/8/12		9/15/12	9/8/12	9/8/12	9/15/12	Screening Criteria	Levels
Sa	mple Depth (ft bgs)		0-0.5		0-0.5			0-0.5			0-0.5		0-0.5	0.5-1.0	0-0.5	0-0.5		
Constituent	CAS Number																	
234678-HxCDF	60851-34-5	0.1	60.1	<	32.1	U	<	11.2	U		1.3	j	15.3	6.49	20.6	3 j	- [-
1234678-HpCDF	67562-39-4	0.01	280		78.7	J		37.6	J		8.39		255 J	99.9	300	36.9	-	-
1234789-HpCDF	55673-89-7	0.01	63	<	32.1		<	11.2			1.85	j	7.93 j	6.08	< 14.1 U	2.91 j	-	-
OCDF	39001-02-0	0.0003	495		163			162			13.7		337	567	757	63.6	-	-
Total TCDD	41903-57-5		0.957 j	<	6.41			1.94	j	<	0.804		1.66 j	36.9	75.8	< 1.08	-	-
Total PeCDD	36088-22-9		11.3 j		4.27	j		2.72	j	<	4.02		21	43.3	69.1	0.749 j	-	-
Total HxCDD	34465-46-8		246		205			65.7			14.5		343	284	522	21.4	-	-
Total HpCDD	37871-00-4		2290		2370			1080			82.1		3080	3290	5750	227	-	-
Total TCDF	30402-14-3		113		10.1			6.63			7.02		28.5	22.6	24.7	2.15	-	-
Total PeCDF	30402-15-4		436		32.9			2.16	j		5.32		124	43.2	139	13.2	-	-
Total HxCDF	55684-94-1		905		146			30.8			17		447	192	789	109	-	-
Total HpCDF	38998-75-3		749		230			98.4			22.6		699	498	1170	134	-	-
Calculated TEQ (ND=0) ³			81.5		18.6			8.61			1.79		40.8	29.1	78.2	4.61	15.0	-
Calculated TEQ (ND=1/2 DL) ³			84.0		51.4			20.0			5.47		42.6	30.3	80.4	6.01	15.0	-
Asbestos by ALS Laboratory Internal M	lethod ENV004	-																
Asbestos (total)	1332-21-4		ND		ND			ND			ND		ND	ND	ND	ND	-	-

¹ Screening criteria are derived from Oregon DEQ Risk Based Decision Making for the Remediation of Petroleum Impacted Sites for Occupational and Construction Worker receptors, June 2012.

Risk Based Decision Making Action Levels are screened among three pathways - Soil Ingestion/Dermal Contact/Inhalation, Volatilization to Outdoor Air, Vapor Intrusion to Buildings

² Default Background Concentrations for Metals in Oregon Soils: DEQ, 2002. Memo from Toxicology Workgroup. Default Background Concentration for Metals. October 28. Media = soil

Screening criteria are not considered exceeded when results are equal to or below established regional background levels.

³ TEQ = Toxicity Equivalency Quotient to 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD). Only positively identified compounds are included in TEQ calculation.

TEF = Toxicity Equivalency Factors (Van den Berg et al. 2006. The 2005 World Health Organization Re-evaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds, ToxSci Advance Access, 7 July 2006). - = Applicable screening criteria for this constituent are not available.

< = Constituent was not detected above the laboratory MDL or MRL (constituent-dependant). Applicable reporting limit provided.

Bold = The analyte was detected above the applicable reporting limit.

Empty cells = Constituent not analyzed.

ft bgs = feet below ground surface

MDL = Method detection limit

MRL = Method reporting limit

mg/kg = micrograms per kilogram

ND = Not detected

ng/kg = nanograms per kilogram

Detected concentration exceeds one or more sceening criteria.

Analyte not detected, but MDL exceeds one or more screening criteria.

Laboratory Data Qualifiers:

j = The value reported is below the laboratory reporting limit and should be considered an estimate.

ERM Data Qualifiers:

J = Detected sample result qualified as estimated J+ = Detected sample result qualified as estimated and biased high NJ = Estimated value U = Sample result qualified as nondetected

Table 7

Storm Water and Tailrace Solids Analytical Results Phase II Environmental Site Assessment Blue Heron Mill Site and Main Office Building

Table 8 Analytes with Detections above Screening Criteria Storm Water and Tailrace Solids Phase II Environmental Site Assessment Blue Heron Mill Site and Main Office Building

Constituent of Internet	City Fratient	T ti	Counts ID	Converte Dete	Consult Doubt		Regional					Screening Criteria ²				
Constituent of interest	Site reature	Location	Sample ID	Sample Date	(ft bgs)	Concentration	Background		Inges	tion, Dermal Co	ontact, and Inha	lation	Volatilization	to Outdoor Air	Vapor Int	rusion into
					(it bgs)		Levels1	Occup	pational	Constructi	on Worker	Excavation Worker	Occuj	pational	Occup	ational
								SL	EQ	SL	EQ	SL EQ	SL	EQ	SL	EQ
Total Metals by EPA Method 6000/2	7000 Series (mg/kg)															
Arsenic	Tailraces	TR1-01	TR-01-0-0.5-091512	9/15/2012	0-0.5	17.9	7	1.7	10.5	13	1.4	370	-		-	
moenie	runuces	TR2-02/03 (composite)	TR2-SHALLOW	9/8/2012	0-0.5	7.6	7	1.7	4.5	13		370	-		-	
Semivolatile Organic Compounds (SVOCs) by EPA Met	hod 8270D (mg/kg)														
Benzo(a)pyrene	Tailraces	TR2-02	TR2-02-DEEP	9/8/2012	Deep	0.46		0.27	1.7	2.1		59	-		-	
Polychlorinated Biphenyls (PCBs) b	y EPA Method 80824	A (mg/kg)														
Total PCBs as Aroclors	Pipe Tunnel	F53-01	F53-01-0-0.5	9/14/2012	0-0.5	2.9		0.7	4.1	7.5		210	-		-	
Total T CD5 us Thochrs	Pump Stations	PS2-01	PS2-01-Shallow	9/8/2012	0-0.5	0.888		0.7	1.3	7.5		210	-		-	
Dioxins and Furans by EPA Method	d 8290A (ng/kg)															
	Pipe Tunnel	F53-01	F53-01-0-0.5	9/14/2012	0-0.5	81.50		15	5.4	150		4200	-		-	
	Clarifier	F55-01	F55-01-0-0.5-091412	9/14/2012	0-0.5	18.63		15	1.2	150		4200	-		-	
Calculated TEQ (ND=0) ³		TR1-01	TR1-01-0-0.5-091512	9/15/2012	0-0.5	40.81		15	2.7	150		4200	-		-	
	Tailraces	TR2-02	TR2-02-DEEP	9/8/2012	0.5-1.0	29.06		15	1.9	150		4200	-		-	
		TR2-02/03 (composite)	TR2-SHALLOW	9/8/2012	0-0.5	78.22		15	5.2	150		4200	-		-	
	Pipe Tunnel	F53-01	F53-01-0-0.5	9/14/2012	0-0.5	84.04		15	5.6	150		4200	-		-	
	Clarifier	F55-01	F55-01-0-0.5-091412	9/14/2012	0-0.5	51.37		15	3.4	150		4200	-		-	
Calculated TEO (ND=1/2 DL) ³	Pump Stations	PS1-01	PS1-01-0-0.5-091412	9/14/2012	0-0.5	20.03		15	1.3	150		4200	-		-	
Calculated TEQ (ND-1/2 DE)		TR1-01, TR1-02	TR1-01-0-0.5-091512	9/15/2012	0-0.5	42.61		15	2.8	150		4200	-		-	
	Tailraces	TR2-02	TR2-02-DEEP	9/8/2012	0.5-1.0	30.27		15	2.0	150		4200	-		-	
		TR2-02/03 (composite)	TR2-SHALLOW	9/8/2012	0-0.5	80.41		15	5.4	150		4200	-		-	

Notes:

¹Default Background Concentrations for Metals in Oregon Soils: DEQ, 2002. Memo from Toxicology Workgroup. Default Background Concentration for Metals. October 28. Media = soil

² Screening criteria are derived from Oregon DEQ Risk Based Decision Making for the Remediation of Petroleum Impacted Sites for Occupational and Construction Worker receptors, June 2012.

³ TEQ = Toxicity Equivalency Quotient to 2,37,8-Tetrachlorodibenzo-p-dioxin (TCDD). Only positively identified compounds are included in TEQ calculation. Toxicity equivalency factors provided in previous table.

- = Indicates applicable screening criteria for this constituent are not available.

Bold = The analyte was detected above the applicable reporting limit.

EQ = Exceedance quotient

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

SL = Screening level ng/kg = nanograms per kilogram

= Detected concentration exceeds one or more sceening criteria; screening criteria exceeded are shaded.

Screening Level Exceedance Quotient Key:

 Indicates detected concentration exceeds screening criteria by a factor between 1 and 5. Indicates detected concentration exceeds screening criteria by a factor between 5 and 10.
 Indicates detected concentration exceeds screening criteria by a factor above 10.

	Site Feature		Pip	e Tu	nnel				Clarifier				Pump	Stations					Tailraces			
	Location		F53-01		F5	3-01			F55-01			PS1-01		PS2-01			TR1-01		TR2-02 ²		TRH-01	Most Conservative
	Sample ID	F53-0	01-SW-091412		DUP-01-	SW-091	1412	F55-	01-SW-09	1412	PS1	-01-SW-09	1412	PS2-01-SW-09	0812	TR1-	-01-SW-091412	TR2	-01-SW-091412	TR	H-01-SW-091412	Screening Criteria ¹
	Sample Date		9/14/12		9/1	4/12			9/14/12			9/14/12		9/8/12			9/14/12		9/14/12		9/14/12	Ŭ
Constituent	CAS Number													•				·		·		
Total Metals by EPA Method 6000/7000	Series (µg/L)																					-
Arsenic	7440-38-2		1.6			1.5			1.2			1.3		2			1.6		3.5		0.5	2.1
Cadmium	7440-43-9		0.15		().21			0.08			1.14		0.39			0.11		0.14		0.14	1.1
Chromium	7440-47-3		1.4			1.3			1.6			1		4.2			0.5		4.9		0.6	-
Copper	7440-50-8		22.2		:	20.8			9			21.2		84.6			7.4		37		41	12
Lead	7439-92-1		4.97		9	9.13			1.16			1.74		7.32			1.75		1.66		2.95	-
Nickel	7440-02-0		23.2			21.5			24.4			15.9		37.1			6		38.7		6.9	140
Zinc	7440-66-6		415			833			26.7			36.7		119			15.8		86		27.7	110
Hexavalent Chromium	18540-29-9	<	2		<	2		<	2		<	2				<	2	<	2	<	2	-
Mercury	7439-97-6							<	0.2							<	0.2			<	0.2	0.012
Total Petroleum Hydrocarbons (TPH) b	y NW Methods (μg/	L)																				
Gasoline Range Organics	GRO	<	250		<	250		<	250		<	250		< 250		<	250	<	250	<	250	-
Diesel Range Organics	DRO		280	NJ		500	NJ		460	NJ		410	NJ	60000	NJ	<	260		6100 N	J <	260	-
Oil Range Organics	RRO	<	490			830	NJ	<	530		<	500		130000	NJ	<	510		3300 N	J <	520	-
Volatile Organic Compounds (VOCs) b	y EPA Method 8260	C (µg/L)	: Detected Co	mpot	unds Onl	у								_								-
1,2,4-Trimethylbenzene	95-63-6	<	2		<	2		<	2		<	2		11		<	2	<	2	<	2	-
1,3,5-Trimethylbenzene	108-67-8	<	2		<	2		<	2		<	2		3.1		<	2	<	2	<	2	-
Chloroform	67-66-3		0.97).98		<	0.5			1.2		0.68			1.4	<	0.5	<	0.5	74
Ethylbenzene	100-41-4	<	0.5		<	0.5		<	0.5		<	0.5		1.5		<	0.5	<	0.5	<	0.5	160
m,p-Xylenes	179601-23-1	<	0.5		<	0.5		<	0.5		<	0.5		9.4		<	0.5	<	0.5	<	0.5	-
Naphthalene	91-20-3	<	2		<	2		<	2		<	2		7.4		<	2	<	2	<	2	-
o-Xylene	95-47-6	<	0.5		<	0.5		<	0.5		<	0.5		6		<	0.5	<	0.5	<	0.5	-
Toluene	108-88-3	<	0.5		<	0.5		<	0.5		<	0.5		1.3		<	0.5	<	0.5	<	0.5	720
Semivolatile Organic Compounds (SV)	OCs) by EPA Method	18270D	(µg/L): Detect	ed Co	ompound	s Only																

¹ Criteria are derived from the Aquatic Life Criteria Tables 20 and 33A and Human Health Criteria Table 40, approved by EPA on 17 October 2011.

² Sample labeled as "TR2-01" on COC and in laboratory reports.

- = Applicable screening criteria for this constituent are not available.

< = Constituent was not detected above the laboratory MDL or MRL (constituent-dependant). Applicable reporting limit provided.

Bold = The analyte was detected above the applicable reporting limit.

Empty cells = Constituent not analyzed.

MDL = Method detection limit

MRL = Method reporting limit

 μ g/L = Micrograms per liter

= Detected concentration exceeds one or more sceening criteria.

= Analyte not detected, but MDL exceeds one or more screening criteria.

ERM Data Qualifiers:

NJ = Estimated value

Table 9

Storm Water and Tailrace Water Analytical Results Phase II Environmental Site Assessment Blue Heron Mill Site and Main Office Building

Table 10 Analytes with Detections above Screening Criteria Storm Water and Tailrace Water Phase II Environmental Site Assessment Blue Heron Mill Site and Main Office Building

Constituent of Interest	Cito Footure	Location	formals ID	Samala Data					Screenin (µ	g Criteria ¹ z/L)			
Constituent of Interest	Site reature	Location	Sample ID	Sample Date	Concentration		Human Health	h (Consumption)		Freshwat	er AWQC	
						Water +	Organism	Organi	sm Only	Ac	cute	Chi	onic
						SL	EQ	SL	EQ	SL	EQ	SL	EQ
Total Metals by EPA Method 600	0/7000 Series (µg/L)												
Arsenic	Tailraces	TR2-02 ²	TR2-01-SW-091412	9/14/2012	3.5	2.1	1.7	2.1	1.7	-		-	
Cadmium	Pump Stations	PS1-01	PS1-01-SW-091412	9/14/2012	1.14	-		-		3.9		1.1	1.0
	Pipe Tuppel	F53-01	F53-01-SW-091412	9/14/2012	22.2	1300		-		18	1.2	12	1.9
	ripe runner	F53-01	DUP-01-SW-091412	9/14/2012	20.8	1300		-		18	1.2	12	1.7
Copper	Pump Stations	PS1-01	PS1-01-SW-091412	9/14/2012	21.2	1300		-		18	1.2	12	1.8
copper	T unip Stations	PS2-01	PS2-01-SW-090812	9/8/2012	84.6	1300		-		18	4.7	12	7.1
	Tailraces	TR2-01	TR2-01-SW-091412	9/14/2012	37	1300		-		18	2.1	12	3.1
	runtaces	TRH-01	TRH-01-SW-091412	9/14/2012	41	1300		-		18	2.3	12	3.4
	Pine Tunnel	F53-01	F53-01-SW-091412	9/14/2012	415	2100		2600		120	3.5	110	3.8
Zinc	Tipe funiter	F53-01	DUP-01-SW-091412	9/14/2012	833	2100		2600		120	6.9	110	7.6
	Pump Stations	PS2-01	PS2-01-SW-090812	9/8/2012	119	2100		2600		120		110	1.1

Notes:

¹ Criteria are derived from the Aquatic Life Criteria Tables 20 and 33A and Human Health Criteria Table 40, approved by EPA on 17 October 2011.

² Sample labeled as "TR2-01" on COC and in laboratory reports.

- = Indicates applicable screening criteria for this constituent are not available.

Bold = The analyte was detected above the applicable reporting limit.

EQ = Exceedance quotient

 $\mu g/L$ = Micrograms per liter

SL = Screening level

= Detected concentration exceeds one or more sceening criteria; screening criteria exceeded are shaded.

Screening Level Exceedance Quotient Key:

Indicates detected concentration exceeds screening criteria by a factor between 1 and 5.

= Indicates detected concentration exceeds screening criteria by a factor between 5 and 10.

= Indicates detected concentration exceeds screening criteria by a factor above 10.

Table 11 Groundwater and Seep Analytical Results Phase II Environmental Site Assessment Blue Heron Mill Site and Main Office Building

		Groun	dwater		Seep Water		
	Site Feature	Building 38- Welding/UST	Truck Dump	Building 33/No. 1 Pa Pl	per Machine & Bleach ant	Building 42 / Chemical Storage	
	Location	F38-01	TD-01	F33-01	F34-01	F42-03	Most Conservative
	Sample ID	F38-01-GW-090712	TD-01-GW-090712	F33-01-SP-091512	F34-01-SP-091512	F42-03-SP-091512	Screening Criteria ¹
	Sample Date	9/7/12	9/7/12	9/15/12	9/15/12	9/15/12	
Sam	ple Depth (ft bgs)	5-10	3-8	Surface	Surface	Surface	
Constituent	CAS Number						
Total Metals by EPA Method 6000/7	'000 Series (µg/L)						
Arsenic	7440-38-2	2.3	11.6	2.9	2.7	9.7	5800
Cadmium	7440-43-9	< 0.02	< 0.02	0.47	0.12	5	57000
Chromium	7440-47-3	< 0.2	0.9	10.2	< 2 U	35.2	-
Copper	7440-50-8	0.9	0.4	34.8	11.3	1310	5000000
Lead	7439-92-1	4.67	0.09	40.1	8.67	283	-
Nickel	7440-02-0	1.1	6.1	30	< 4 U	120	12000000
Zinc	7440-66-6	1.5	2	84.5	20.4	1220	-
Total Petroleum Hydrocarbons (TPI	H) by NW Method	s (μg/L)					
Gasoline Range Organics	GRO	< 250	< 250	< 250	< 250	< 250	13000
Diesel Range Organics	DRO	< 250	na	< 270	< 250	8500 NJ	23000
Oil Range Organics	RRO	< 490	na	910 NJ	< 500	31000 NJ	40000
Volatile Organic Compounds (VOC	s) by EPA Method	l 8260C (µg/L): Detected	Compounds Only				
Carbon Disulfide		< 0.5	< 0.5	< 0.5	< 0.5	1	-
Chloroform		< 0.5	< 0.5	< 0.5	2.2	< 0.5	720
Ethylbenzene		< 0.5	< 0.5	2.3	< 0.5	< 0.5	4400
m,p-Xylenes		< 0.5	< 0.5	10	< 0.5	< 0.5	23000
o-Xylene		< 0.5	< 0.5	2.8	< 0.5	< 0.5	-
Toluene		< 0.5	< 0.5	9.4	1.1	0.93	210000
Semivolatile Organic Compounds (SVOCs) by EPA N	lethod 8270D (µg/L): Det	ected Compounds Only				
Bis(2-ethylhexyl) Phthalate	117-81-7		< 9.5	< 10	< 12	21	-

Notes:

¹ Screening criteria are derived from Oregon DEQ Risk Based Decision Making for the Remediation of Petroleum Impacted Sites for Occupational and Construction Worker receptors, June 2012.

Risk Based Decision Making Action Levels are screened among three pathways - Volatilization to Outdoor Air, Vapor Intrusion to Buildings, and Groundwater in Excavations

- = Applicable screening criteria for this constituent are not available.

< = Constituent was not detected above the laboratory MDL or MRL (constituent-dependant). Applicable reporting limit provided.

Bold = The analyte was detected above the applicable reporting limit.

na = Not analyzed. Sample volume unavailable due to slow recharge rate.

ft bgs = feet below ground surface

MDL = Method detection limit

MRL = Method reporting limit

 $\mu g/L = Micrograms per liter$

ERM Data Qualifiers:

NJ = Estimated value

U = Sample result qualified as nondetected

	Site Feature											Intake Basin	ı										
	Location				IB	8-01				II	3-02							IB-03					
	Sample ID	TEFs	IB-01	-0-6inch-09	1412	IB-01	1-2.5-3.0-09	1412	IB-0	2-0-6inch-091412	IB	-02-2.5-3.0-09	1412	IB-	03-0-6inch-091	1412	IB-0	3-1.5-2-091	412	IB-0	3-3.5-4.0-0	91412	Most Conservative
	Sample Date			9/14/12			9/14/12			9/14/12		9/14/12			9/14/12			9/14/12			9/14/12		Screening Criteria
S	ample Depth (ft bss)			0-0.5			2.5-3.0			0-0.5		2.5-3.0			0-0.5			1.5-2			2.5-3.0		
Constituent	CAS Number								<u> </u>		<u> </u>												
Total Metals by EPA Method 6000/700	0 Series (mg/kg)		•																				
Arsenic	7440-38-2			2.4			2.8			2.4		3.2			2.8			2.1			2.7		7
Cadmium	7440-43-9			0.12			0.18			0.1		0.21			0.12			0.11			0.17		1
Chromium	7440-47-3			24.5			31.1			22.8		33.1			26.6			21.4			29		-
Copper	7440-50-8			26.7			38.7			22		42.8			28.2			21.4			36.1		-
Lead	7439-92-1			8.78	I		10.5			5.42		11.6			6.59			5.61			10		17
Nickel	7440-02-0			23.5	,		26.1			23.4		26.7			24.6			23.6			24.2		-
Zinc	7440-66-6			67.5			85.2			61.2		90.9			69.9			58.2			79.4		_
Semivolatile Organic Compounds (SV	OCs) by EPA Method	18270D (m	. 1g/kg):]	Detected Co	ompou	nds On	lv		<u> </u>		1						1			1			<u></u>
No Compounds Detected					P		-9	-			-		-	-		-							
Polychlorinated Biphenyls (PCBs) by I	EPA Method 8082A (1	mg/kg)																					
Aroclor 1016	12674-11-2		<	0.089		<	0.089		<	0.078	<	0.09		<	0.084		<	0.069		<	0.084		<u> </u>
Aroclor 1221	11104-28-2		<	0.18		<	0.18		<	0.16	<	0.18		<	0.17		<	0.14		<	0.17		_
Aroclor 1221	11101 20 2		<	0.089		<	0.089		<	0.078	<	0.09		<	0.084		<	0.069		<	0.084		_
Aroclor 1242	53469-21-9		<	0.089		<	0.089		<	0.078		0.09			0.084		<	0.069		<	0.084		
Aroclor 1242	12672 29 6		2	0.009		2	0.009			0.078		0.09			0.084		-	0.069		2	0.004		
Aroclor 1240	11007 60 1			0.009			0.009			0.078		0.09			0.084			0.009			0.004		-
Aroclor 1254	11097-09-1			0.089			0.089			0.078		0.09			0.084			0.009			0.084		-
Total DCPs as Araslars	11090-02-5			0.069			0.069			0.076		0.09			0.064			0.069			0.004		4 2017 05
Dioxing and Eurang by EPA Method 87	$290 \Lambda (ng/l(g))$			0.18			0.10			0.10		0.18			0.17			0.14			0.17	-	4.001-05
2378 TCDD	1746 01 6	1	<	0.808	_	6	0.885	_	6	0.773	6	0.914	II	6	0.852	-	6	0.600	_		0.628	;	0.0011
12378-PeCDD	40321-76-4	1	~	1 19			0.000	i	~	3.86		4.57	 		4.26		~	3.5		<	4.22	J	0.034
123/78-HyCDD	39227-28-6	0.1	~	1.19			0.492		` ~	3.86		4.57	 		4.20		~	3.5		~	4.22	U	0.34
123478-HxCDD	57653 85 7	0.1	`	1.49	;		/ 97	J		3.86		6.08	0		1 22	;	~	0.751	:		9.18	0	0.34
123789 HyCDD	19408 74 3	0.1	1	1.07	J	-	4.42	II		3.86	6	4.57	II	~	4.26	J		0.731	; ;		3.02		0.34
123769-11XCDD	35822.46.0	0.01	`	10 5			4.42	0		14.5		76.9	0		4.20 21.1			17.3	J		70.4	J	85
OCDD	3268-87-9	0.0003		137			375	T		116		665	T		161			145			573		2800
2378 TCDE	51207 31 0	0.0005	1	0.808			4.04)	1	0.773		3.08	J	~	0.852		-	0.600			3.57		0.094
12378 Pac DE	57117 41 6	0.03		1 10		2	4.42			3.86		0.44	;		4.26			3.5		-	4.22	II	0.074
23478-PeCDF	57117-31-4	0.05	~	1.19			4.42			3.86	<	4.57	J		4.20		~	3.5		~	4.22	U	0.0037
123478-HyCDE	70648-26-9	0.5	~	1.19			0.65	i	~	3.86		0.987	i		0.558	;	`	0.24	i	~	4.22	U	0.34
123678-HxCDF	57117-44-9	0.1	~	1.19			0.05		` ~	3.86	<	0.788	J TT		0.350	i		0.24	j	-	0.963		0.34
123070-11XCD1	72918-21-9	0.1	~	1.19		<	4.42	J	~	3.86		4.57	0	<	4.26)	<	3.5)	<	4.22	J	0.34
234678 HyCDE	60851 34 5	0.1		1.10			0.615	;		3.86		0.956	;		0.368	;		3.5			0.0/1	:	0.34
1234678 HpCDE	67562 39 4	0.01		4.49	II		5.92	J		2.80 j		10.1	J		4.41	J		3.5	II	-	0.33	J	85
12340789 HpCDF	55673 89 7	0.01		4.49	U	~	1.42		~	2.81 J	-	10.1			0.432	;		3.5	0		4.22	0	85
OCDF	39001-02-0	0.0003	ì	11.6			22.4			10.6	Ì	42.6			17.6)		16.1			33.7		2800
Total TCDD	41903-57-5	0.0005		1 22			0.89			0 782	<	0.914			13		<	0.699			2 85		-
Total PeCDD	36088-22-9		<	4 49			0.492	i	<	3.86		1.24	i	<	4 26			0.308	i		4.39		-
Total HxCDD	34465-46-8			1.83	i		34.5	,	<	3.86		40.6	,		6.46			4.53)		55.6		_
Total HpCDD	37871-00-4			36.9	,		99.4			29.9		167			43.9			33.3			147		-
Total TCDF	30402-14-3		<	0.898			8.2		<	0.773	1	12.2		<	0.852		<	0.699			6.82		-
Total PeCDF	30402-15-4		<	4.49			4.86			1.36 j		7.74			1.41	j		0.931	i		7.83		-
Total HxCDF	55684-94-1			2.48	j		13.1			1.53 j		18.9			6.93			3.26	j		18.6		-
Total HpCDF	38998-75-3			7.67			20.8			8.63		36.1			15.4			7.25			22.5		-
Calculated TEQ $(ND=0)^2$				0.347			2.27			0.211		2.30			0.564			0.383			3.27		0.0011
Calculated TEQ $(ND=1/2 DL)^2$				5.22			3.91			4.57		6.47			4.50			3.66			6.78		0.0011

Table 12

Intake Basin Sediment Analytical Results Phase II Environmental Site Assessment Blue Heron Mill Site and Main Office Building

¹ Screening criteria are derived from Sediment Bioaccumulation Levels provided in ODEQ Guidance for Assessing Bioaccumulative Chemical of Concern in Sediment, Updated April 3, 2007.

² TEQ = Toxicity Equivalency Quotient to 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD). Only positively identified compounds are included in TEQ calculation.

TEF = Toxicity Equivalency Factors (Van den Berg et al. 2006. The 2005 World Health Organization Re-evaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds, ToxSci Advance Access, 7 July 2006). - = Applicable screening criteria for this constituent are not available.

< = Constituent was not detected above the laboratory MDL or MRL (constituent-dependant). Applicable reporting limit provided.

Bold = The analyte was detected above the applicable reporting limit.

ft bss = feet below sediment surface

MDL = Method detection limit

MRL = Method reporting limit

mg/kg = micrograms per kilogram

ng/kg = nanograms per kilogram

= Detected concentration exceeds one or more sceening criteria. = Analyte not detected, but MDL exceeds one or more screening criteria.

Laboratory Data Qualifiers:

j = The value reported is below the laboratory reporting limit and should be considered an estimate.

ERM Data Qualifiers:

J = Detected sample result qualified as estimated

U = Sample result qualified as nondetected

Constituent of Interest	Site Feature	Location	Sample ID	Sample Date	Sample Depth	epth Concentration Birds Mammals Fich Humans Inorganic Background																		
Constituent of Interest	Site Feature	Location	Sample ID	Sample Date	(ft bss)	Concentration		B	irds			Man	nmals			Fi	ish			Hui	nans		Inorgani	c Background
					(22 200)		Indi	vidual	Pop	ulation	Indi	vidual	Pop	ulation	Fres	hwater	M	larine	Ger	neral	Subsi	stence	Fre	shwater
							SL	EQ	SL	EQ	SL	EQ	SL	EQ	SL	EQ	SL	EQ	SL	EQ	SL	EQ	SL	EQ
Dioxins and Furans by EPA Metho	od 8290A (ng/kg)								·		-					- -			-		-			
		IB-01	IB-01-0-6inch-091412	9/14/2012	0-0.5	0.347	0.7		3.5		0.052	6.7	1.4		0.56		0.56		0.0091	38.1	0.0011	315.1	-	
		IB-01	IB-01-2.5-3.0-091412	9/14/2012	2.5-3.0	2.27	0.7	3.2	3.5		0.052	43.7	1.4	1.6	0.56	4.1	0.56	4.1	0.0091	250.0	0.0011	2068.1		
		IB-02	IB-02-0-6inch-091412	9/14/2012	0-0.5	0.211	0.7		3.5		0.052	4.1	1.4		0.56		0.56		0.0091	23.2	0.0011	191.9	- 1	
Calculated TEQ (ND=0) ²	Intake Basin	IB-02	IB-02-2.5-3.0-091412	9/14/2012	2.5-3.0	2.30	0.7	3.3	3.5		0.052	44.1	1.4	1.6	0.56	4.1	0.56	4.1	0.0091	252.3	0.0011	2087.1	- 1	
		IB-03	IB-03-0-6inch-091412	9/14/2012	0-0.5	0.564	0.7		3.5		0.052	10.8	1.4		0.56	1.0	0.56	1.0	0.0091	61.9	0.0011	512.4	- 1	
		IB-03	IB-03-1.5-2-091412	9/14/2012	1.5-2	0.383	0.7		3.5		0.052	7.4	1.4		0.56		0.56		0.0091	42.1	0.0011	348.3	-	
		IB-03	IB-03-3.5-4.0-091412	9/14/2012	2.5-3.0	3.27	0.7	4.7	3.5		0.052	62.9	1.4	2.3	0.56	5.8	0.56	5.8	0.0091	359.5	0.0011	2974.0	-	
		IB-01	IB-01-0-6inch-091412	9/14/2012	0-0.5	5.22	0.7	7.5	3.5	1.5	0.052	100.4	1.4	3.7	0.56	9.3	0.56	9.3	0.0091	573.4	0.0011	4743.8	-	-
		IB-01	IB-01-2.5-3.0-091412	9/14/2012	2.5-3.0	3.91	0.7	5.6	3.5	1.1	0.052	75.2	1.4	2.8	0.56	7.0	0.56	7.0	0.0091	429.8	0.0011	3555.3	-	
		IB-02	IB-02-0-6inch-091412	9/14/2012	0-0.5	4.57	0.7	6.5	3.5	1.3	0.052	88.0	1.4	3.3	0.56	8.2	0.56	8.2	0.0091	502.6	0.0011	4157.7	-	
Calculated TEQ (ND=1/2 DL) ²	Intake Basin	IB-02	IB-02-2.5-3.0-091412	9/14/2012	2.5-3.0	6.47	0.7	9.2	3.5	1.8	0.052	124.4	1.4	4.6	0.56	11.6	0.56	11.6	0.0091	711.1	0.0011	5882.8	- 1	
		IB-03	IB-03-0-6inch-091412	9/14/2012	0-0.5	4.50	0.7	6.4	3.5	1.3	0.052	86.6	1.4	3.2	0.56	8.0	0.56	8.0	0.0091	495.0	0.0011	4094.6		
		IB-03	IB-03-1.5-2-091412	9/14/2012	1.5-2	3.66	0.7	5.2	3.5	1.0	0.052	70.3	1.4	2.6	0.56	6.5	0.56	6.5	0.0091	401.7	0.0011	3322.8	- 1	
		IB-03	IB-03-3.5-4.0-091412	9/14/2012	2.5-3.0	6.78	0.7	9.7	3.5	1.9	0.052	130.4	1.4	4.8	0.56	12.1	0.56	12.1	0.0091	744.9	0.0011	6162.2	<u> </u>	
2378-TCDD	Intake Basin	IB-03	IB-03-3.5-4.0-091412	9/14/2012	2.5-3.0	0.628	0.7		3.5		0.052	12.1	1.4		0.56	1.1	0.56	1.1	0.0091	69.0	0.0011	570.9	- 1	
12378-PeCDD	Intake Basin	IB-01	IB-01-2.5-3.0-091412	9/14/2012	2.5-3.0	0.492	21		110		1.5		42		17		17		0.27	1.8	0.034	14.5	<u> </u>	
123478-HxCDD	Intake Basin	IB-01	IB-01-2.5-3.0-091412	9/14/2012	2.5-3.0	0.542	420		2100		15		420		34		34		2.7		0.34	1.6	<u> </u>	
		IB-01	IB-01-0-6inch-091412	9/14/2012	0-0.5	1.07	2100		11000		15		420		1700		1700		2.7		0.34	3.1	-	
		IB-01	IB-01-2.5-3.0-091412	9/14/2012	2.5-3.0	4.97	2100		11000		15		420		1700		1700		2.7	1.8	0.34	14.6		
123678-HxCDD	Intake Basin	IB-02	IB-02-2.5-3.0-091412	9/14/2012	2.5-3.0	6.08	2100		11000		15		420		1700		1700		2.7	2.3	0.34	17.9	-	
1200/01140222	intuite buoin	IB-03	IB-03-0-6inch-091412	9/14/2012	0-0.5	1.33	2100		11000		15		420		1700		1700		2.7		0.34	3.9		
		IB-03	IB-03-1.5-2-091412	9/14/2012	1.5-2	0.751	2100		11000		15		420		1700		1700		2.7		0.34	2.2	-	
		IB-03	IB-03-3.5-4.0-091412	9/14/2012	2.5-3.0	8.18	2100		11000		15		420		1700		1700		2.7	3.0	0.34	24.1	<u> </u>	
123789-HxCDD	Intake Basin	IB-03	IB-03-1.5-2-091412	9/14/2012	1.5-2	0.486	210		1100		15		420		1700		1700		2.7	_	0.34	1.4		
		IB-03	IB-03-3.5-4.0-091412	9/14/2012	2.5-3.0	3.92	210		1100		15		420		1700		1700		2.7	1.5	0.34	11.5	<u> </u>	
		IB-01	IB-01-2.5-3.0-091412	9/14/2012	2.5-3.0	4.04	5.9		30		4.3		120		95		95		0.77	5.2	0.094	43.0		
2378-TCDF	Intake Basin	IB-02	IB-02-2.5-3.0-091412	9/14/2012	2.5-3.0	3.98	5.9		30		4.3		120		95		95		0.77	5.2	0.094	42.3		
	N. I. D. I.	IB-03	IB-03-3.5-4.0-091412	9/14/2012	2.5-3.0	3.57	5.9		30		4.3		120		95		95		0.77	4.6	0.094	38.0	<u> </u>	
12378-PeCDF	Intake Basin	IB-02	IB-02-2.5-3.0-091412	9/14/2012	2.5-3.0	0.440	59		300		14		400		95		95		2.6		0.31	1.4		
100470 LL CDE	Lat. L. D 's	IB-01	IB-01-2.5-3.0-091412	9/14/2012	2.5-3.0	0.650	210		1100		15		420		170		170		2.7		0.34	1.9	<u> </u>	
123478-HXCDF	Intake basin	IB-02	IB-02-2.5-3.0-091412	9/14/2012	2.5-3.0	0.987	210		1100		15		420		170		170		2.7		0.34	2.9	·	
		IB-03	IB-03-0-6inch-091412	9/14/2012	0-0.5	0.558	210		1100		15		420		170		170		2.7		0.34	1.6	·	
123678-HxCDF	Intake Basin	IB-01	IB-01-2.5-3.0-091412	9/14/2012	2.5-3.0	0.598	210		1100		15		420		170		170		2.7		0.34	1.8	·	
		IB-03	IB-03-3.5-4.0-091412	9/14/2012	2.5-3.0	0.963	210		1100		15		420		170		170		2.7		0.34	2.8	<u> </u>	
		1B-01	ID-01-2.5-3.0-091412	9/14/2012	2.5-3.0	0.615	210		1100		15		420		170		170		2.7		0.34	1.8	<u> </u>	
234678-HxCDF	Intake Basin	IB-02	IB-02-2.5-3.0-091412	9/14/2012	2.5-3.0	0.956	210		1100		15		420		170		170		2.7		0.34	2.8	·	
		IB-03	IB-03-0-6inch-091412	9/14/2012	0-0.5	0.368	210		1100		15		420		170		170		2.7		0.34	1.1	<u> </u>	
		IB-03	IB-03-3.5-4.0-091412	9/14/2012	2.5-3.0	0.941	210		1100		15		420		170		170		2.7		0.34	2.8	<u> </u>	

¹ Screening criteria are derived from Sediment Bioaccumulation Levels provided in ODEQ Guidance for Assessing Bioaccumulative Chemical of Concern in Sediment, Updated April 3, 2007
² TEQ = Toxicity Equivalency Quotient to 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD). Only positively identified compounds are included in TEQ calculation. Toxicity equivalency factors provided in previous table.

- = Indicates applicable screening criteria for this constituent are not available.

Bold = The analyte was detected above the applicable reporting limit. EQ = Exceedance quotient

ft bss = feet below sediment surface

SL = Screening level

ng/kg = nanograms per kilogram

= Detected concentration exceeds one or more sceening criteria; screening criteria exceeded are shaded.

Screening Level Exceedance Quotient Key:

	= Indicates detected cond
	= Indicates detected cond
	= Indicates detected cond

ncentration exceeds screening criteria by a factor between 1 and 5. ncentration exceeds screening criteria by a factor between 1 and 5. ncentration exceeds screening criteria by a factor between 5 and 10. ncentration exceeds screening criteria by a factor above 10.

Table 13 Analytes with Detections above Screening Criteria Intake Basin Sediment Phase II Environmental Site Assessment Blue Heron Mill Site and Main Office Building

Appendix A Phase II ESA Conceptual Approach

Conceptual Sampling Approach for the Blue Heron Site Presentation to ODEQ - July 23, 2012

The world's leading sustainability consultancy

Physical Setting

The world's leading sustainability consultancy

Water Management at the Site

Water Management at the Site (cont)

Tailraces

Storm Water System

The world's leading sustainability consultancy

In-Take Basin

Examples of Potential Sources

Previous Investigations – PCB Sampling

10 The world's leading sustainability consultancy

Previous Investigations – EPA SI

Conceptual Sampling Strategy

Handouts

Table 1 – Area by area summary of potential areas of concern

Table 2 – Summary of proposed sampling by media type

Figure 1 – Preliminary sampling locations

Note: Sampling at all proposed sampling locations will likely not be possible (due to lack of media to sample, access issues, etc.)

Figure 1 – Proposed Sampling Locations

Legend

Figure Proposed Sample Location Phase II ES Blue Heron Si Oregon City, Orego

Environmental Resources Management 1001 SW Sth St, Suite 1010

ERM

14

The world's leading sustainability consultancy

Feature No.	Feature Name	Date and Size	Area of Environmental Concern	Description of Possible Source	Media Potentially Impacted (Sediment, Soil, Storm water, Surface Water, or Groundwater)	Potential Constituents of Interest	Proposed Phase II Sampling to Evaluate (see Table 2)
1	1 Blue Heron Paper Office Area		North Parking Lot	Former vehicle repair garage and service station 1943-1956 and Tire Sales in 1959; fuel Tanks and hydraulic systems	Soil, Groundwater	Petroleum hydrocarbons, Solvents, PCBs	3 - Soil/Fill 4 - Groundwater (if present)
			Elevator, mechanical room.	Hydraulic system	Soil, Groundwater	Petroleum hydrocarbons, PCBs	3 - Soil/Fill 4 - Groundwater (if present)
2	Water Filter Plant - Settling Basin and Pump House	1953 37 x 105 PH	Second Floor Transformer (2), filtration system ASTs, Basement Pump room	Electrical systems, Chemical storage, petroleum, Metals, Sodium Bromide, Sodium Hypochlorite, Alum	Storm water, and Sediment	Petroleum hydrocarbons, PCBs, Metals, Asbestos	1 -Storm Water / Waste Water System 2 - Tailraces
2a	Fire Hall - Annex	1981 37 x 20	None	N/A	N/A	N/A	N/A
3	Filter Control Building	1965 41 x 65	None	N/A	N/A	N/A	N/A
4	Fire Hall	1981 37 x 45	None	N/A	N/A	N/A	N/A
5	Office and First Aid Building	1965 41 x 47	None	N/A	N/A	N/A	N/A
6	Guard Shack		None	N/A	N/A	N/A	N/A
7	4th Street Building (covered platform south)		Loading platform	Hydraulic systems	Storm water and Sediment	Petroleum hydrocarbons, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
8	4th Street Building (covered platform west)		None	N/A	N/A	N/A	N/A
9	Warehouse No. 3 (Rail Car Loading)	1913 40 x 127	Basement	Elevator, 10k gallon Mineral Oil AST NW Exterior, Hydraulic systems	Soil, Groundwater	Petroleum hydrocarbons, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
10	No. 3 Finishing Building	1913 54 x 125 (basement)	Basement	Hydraulic systems	Soil, Groundwater	Petroleum hydrocarbons, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
11	Mill "B" Warehouse (No. 2 Finishing Building)	1913 54 x 125	None	N/A	N/A	N/A	N/A
12	Number "2" Paper Machine	1913 43 x 185	Basement	Hydraulic systems, Dye, Radiation Source	Soil, Fill, Groundwater, Storm water, and Sediment	Petroleum hydrocarbons, PCBs, Metals	1 -Storm Water / Waste Water System 2 - Tailraces
13	Number "3" Paper Machine	1913 58 x 185	Basement	Hydraulic systems, Dye, Transformers, Radiation Source	Soil, Fill, Groundwater, Storm water, and Sediment	Petroleum hydrocarbons, PCBs, Metals	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present) 5 - Seeps
	Sub Station - North	48 x 53	Second Floor	Transformer	Waste water	Petroleum hydrocarbons, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
14	Sub Station - Southwest	30 x 43	Second Floor	Transformers	Waste water	Petroleum hydrocarbons, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
14	Sub Station - Southeast	20 x 57	Second Floor	Transformers	Waste water	Petroleum hydrocarbons, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces

Feature No.	Feature Name	Date and Size	Area of Environmental Concern	Description of Possible Source	Media Potentially Impacted (Sediment, Soil, Storm water, Surface Water, or Groundwater)	Potential Constituents of Interest	Proposed Phase II Sampling to Evaluate (see Table 2)
	Chemical and Tote Storage		First Floor	Felt Wash, Slimicide, Caustic, Kerosene, Hydraulic systems	Soil, Fill, Groundwater, Storm water, and Sediment	Petroleum hydrocarbons, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
15	Butler Building (equipment. storage)	81 x 83	None	N/A	N/A	N/A	N/A
16	West West-center East-center East	46 x 66 20 x 44 35 x 58 40 x 55	_ _ _ Driveway and Rail Spur	Former UST (not previous sampled), Ties and spills	Soil, Fill, Groundwater	Arsenic, Copper, Chromium, SVOCs.	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present)
17	3rd Street Building (Covered Shipping Area)	1960 50 x 110	Rail Spur	Ties and spills	Soil, Fill, Groundwater	Arsenic, Copper, Chromium, SVOCs.	1 -Storm Water / Waste Water System 2 - Tailraces
18	Mill "O" Lab Mill "O" Conference Room Mill "O" Craft and Broke Pulper Mill "O" Raw Material	- 1918, 78 x 160, Canopy - to west	Basement	Fill and water under building	Soil, Fill, Groundwater	Petroleum hydrocarbons, PCBs, Metals, Asbestos	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present)
	Storage	1918 83 x 83					
19	Carpenter Shop	1901 70 x 99	Former Wool Carbonizing Area, West Transformer Storage Area	Acid storage, Dyes, Transformers (exterior)	Soil, Fill, Groundwater	Metals (chromium, copper), Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present)
20	Pipe Shop	1988 45 x 60	None	N/A	N/A	N/A	N/A
21	Millwright Shop	1962 55 x 80	Main floor, ground surface	Former potential UST (not previous sampled) , and former petroleum ASTs for boiler system.	Soil, Fill, Groundwater	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present)
22	Auto Shop	1960 40 x 63	Main floor, ground surface	Former boiler system. Former Dye House	Soil, Fill, Groundwater	Metals (chromium, copper)	1 -Storm Water / Waste Water System 2 - Tailraces
23	Mill "B" Storage - West			N/A	N/A	N/A	N/A
24	Mill "B" Storage - East	60 x 240 (Former		N/A	N/A	N/A	N/A
25	Mill "O" Storage - Interior	Oregon City Woolen Mill Buildings)	None	N/A	N/A	N/A	N/A
26	Mill "O" Storage - Exterior			N/A	N/A	N/A	N/A
27	South Substation (Electric Center)	1956-1969 30 x 60	Entire substation	Transformers (14)	Soil, Fill, Groundwater	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present)
28	Recovery Boiler	-1056-1060 83 v 100	Second Floor	Boiler	Waste water	Metals	1 -Storm Water / Waste Water System 2 - Tailraces

Feature No.	Feature Name	Date and Size	Area of Environmental Concern	Description of Possible Source	Media Potentially Impacted (Sediment, Soil, Storm water, Surface Water, or Groundwater)	Potential Constituents of Interest	Proposed Phase II Sampling to Evaluate (see Table 2)
29	Mill "G" Boiler Plant	1750-1707 05 X 120	Second Floor	Boilers (6), High density Stock and brightening tower to south, Boiler Chemicals	Waste water	Metals	1 -Storm Water / Waste Water System 2 - Tailraces
	Mill "H"	_	Second Floor	Transformer (1) NW corner, Radiation Source	Waste water	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
30	Mill "H" TMP Area	1956-1969 100 x 132	Second Floor	Hydraulic systems, Hazardous waste storage area, Sodium Hydrosulfite, Sulfuric Acid,	Waste water	Petroleum, PCBs, Solvents, Metals	1 -Storm Water / Waste Water System 2 - Tailraces
	Mill "H" DeInk Area		SE corner roof	Transformer (1)	Storm water	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
31	TMP Reject Refining and Screening	1970 70 x 75	W center wall, Tailrace	Transformer (1) W center wall, Fill and	Soil, Fill, Groundwater, Sediment,	Petroleum, PCBs, Metals, Asbestos	1 -Storm Water / Waste Water System
	Addition	1977 25 x 55 1979 25 x 70	under bundling	water under building	Surface water		2 - Tailraces
32	No. 1 Paper Machine	1917 43 x 203	Fill and water under building	Historical uses, Fill and water under building, Radiation Source	Soil, Fill, Groundwater, Waste water	Petroleum, PCBs, Metals	1 -Storm Water / Waste Water System 2 - Tailraces 5 - Seeps
33	No. 1 Save-All Cleaners & Desiccator (Screen Room & DeInk)	1917 78 x 78	First Floor, Basement	Transformer (2) SE Corner, Elevator, two pulp ASTs to east. Fill and water under building, laurylphosphonic acid, Surfactant, Oil, Filler, Felt Wash, Slimicide, Caustic, Kerosene, Urea.	Soil, Fill, Groundwater, Waste water Petroleum, PCBs, , Metals		1 -Storm Water / Waste Water System 2 - Tailraces
34	Bleach Plant (De-Ink Plant)	1960 54 x 57	First Floor, Basement	Transformer (1) NW Corner, 64k Fuel Oil AST SE corner exterior, Bleach Tower and Caustic Tower to N. ext., Fill and water under building	Soil, Fill, Groundwater, Waste water	Petroleum, PCBs, Metals	1 -Storm Water / Waste Water System 2 - Tailraces
35	Rewind Building	1962 30 x 70 c, 17 x 42 n, 24 x 24 s	First Floor, Basement	Hi Density Stock AST to N exterior. Caustic and bleach ASTs to south. Fill and water under building	Soil, Fill, Groundwater, Waste water	Petroleum, PCBs, Metals	1 -Storm Water / Waste Water System 2 - Tailraces
36	Mill "E" Maintenance Shops Mill "E" Receiving and Store Room		First Floor, Water beneath	Transformer (1) NE ext. Corner and SW corner. Oil Room NW Corner. Former debarker and chipper for pulp manufacturing. Water from intake basin	Soil, Fill, Groundwater, Sediment,	Petroleum, PCBs, Solvents, Metals,	1 -Storm Water / Waste Water System
	Mill "E" No. 5 & 6 TMP Refiner Lines	130 x 57	building	under building. Hydraulic systems. Former UST (not previous sampled) on	Surface Water	Asbestos	3 - Soil/Fill 4 - Groundwater (if present)
37	Mill "E" Mill Offices	54 F7	_	Source			
38	Weid Shop Sulfite Plant (Mill C)	65 x 115	Basement	Process waste, Sodium Bisulfite.	Soil, Fill, Groundwater, Waste water	Sulphur, pH,	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present). 5 - Seeps

DRAFT

Table 1 Potential Areas of Environmental Concern Blue Heron Mill Site and Main Office Building

Feature No.	Feature Name	Date and Size	Area of Environmental Concern	Description of Possible Source	Media Potentially Impacted (Sediment, Soil, Storm water, Surface Water, or Groundwater)	Potential Constituents of Interest	Proposed Phase II Sampling to Evaluate (see Table 2)
40	DIG (Digester Building)	32 x 102	Ground floor Exterior, Basement	Petroleum AST east exterior	Soil, Fill, Groundwater, Waste water	Sulphur, pH,	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present) 5 - Seeps
41	No. 4 Save-All		Basement	Process waste (Adjacent to former Boiler Building)	Soil, Fill, Groundwater, Waste water	Metals	1 -Storm Water / Waste Water System 2 - Tailraces
42	No. 4 Paper Machine	1927 72 x 302	Basement	Transformer (1) E wall, Hydraulic systems, Elevator, Radiation Source	Soil, Fill, Groundwater, Waste water	Petroleum, PCBs, Metals	1 -Storm Water / Waste Water System 2 - Tailraces
42a	No. 4 Paper Machine	1927 67 x 80	Basement	Transformer (1) S wall., Elevator, Hydraulic systems, chemical storage east exterior, laurylphosphonic acid, Surfactant, Oil, Filler, Felt Wash, Slimicide, Caustic, Kerosene, Silicate, Sulfuric Acid, Corrosion inhibitor, Dye, Radiation Source	Soil, Fill, Groundwater, Waste water	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
43	No. 4 Paper Addition	1977 25 x 96	Basement	Hydraulic systems	Soil, Groundwater, Waste water	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
44	No. 4 Finishing Room & Warehouse - South	1924 36 x 67	First Floor	Hydraulic systems, former chemical storage	Soil, Groundwater, Waste water	Petroleum, PCBs, Solvents, Metals	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present)
45	No. 4 Finishing Room & Warehouse - Central	1924 67 x 202	First Floor	Elevator	Soil, Groundwater, Waste water	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
46	No. 4 Finishing Room & Warehouse - North	:	First Floor	Hydraulic systems	Soil, Groundwater, Waste water	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
47	Shipping Shed	59 x 80	First Floor	Hydraulic systems	Soil, Groundwater, Waste water	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present)
48	North Substation		Ground surface	Transformers (11)	Soil, Groundwater, Waste water	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
49	Deink ONG Pulper (Mill B)	1928 66 x 143	Current chemical storage	Chemicals collected during plant deconstruction. Laurylphosphonic Acid, Surfactant, Hydrogen Peroxide, Caustic, Silicate, Radiation Source.	Waste water	Petroleum hydrocarbons, PCBs, Metals, Asbestos	1 -Storm Water / Waste Water System 2 - Tailraces
50	Deink ONG Repulper	80 x 100	Current chemical storage	Chemicals collected during plant deconstruction. Used Oil.	Waste water	Petroleum hydrocarbons, PCBs, Metals, Asbestos	1 -Storm Water / Waste Water System 2 - Tailraces
51	Chip and Sawdust Silo	35 x 67	None	N/A	N/A	N/A	N/A
52	Dam		None	N/A	N/A	N/A	N/A

Feature No.	Feature Name	Date and Size	Area of Environmental Concern	rea of Environmental Media Potentially Impacted Concern Description of Possible Source (Sediment, Soil, Storm water, Pot Surface Water, or Groundwater)		Potential Constituents of Interest	Proposed Phase II Sampling to Evaluate (see Table 2)
	Pipe Tunnel		Entire Tunnel	Facility drainage	Storm water, and sediment	Petroleum, PCBs, Solvents, Metals, Dioxins/Furans, Asbestos	1 -Storm Water / Waste Water System
53	DeMiz Building		Main Floor	Hydraulic systems, Chemical storage (Defoamer)	Waste water		1 -Storm Water / Waste Water System 2 - Tailraces
	#1 Pump Station		Sediment trap	Storm water, and sediment	Storm water, and sediment	Petroleum, PCBs, Solvents, Metals, Dioxins/Furans, Asbestos	1 -Storm Water / Waste Water System
54	Clarifier Pump House		Entire Building	Hydraulic systems, Electrical systems	Storm water	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces
55	Clarifier		Bottom of Clarifier	Facility drainage	Storm water, and sediment	Petroleum, PCBs, Solvents, Metals, Dioxins/Furans, Asbestos	1 -Storm Water / Waste Water System
56	Sulfuric Acid AST		Exterior	Paint, Sulfuric Acid	Storm water	Lead	1 -Storm Water / Waste Water System 2 - Tailraces
57	Aboveground Storage Tanks		Exterior	Paint, Hydrogen Peroxide, Caustic, Sulfuric Acid, Silicate	Storm water	Lead	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present)
	Site-wide		Buildings and ground surface	Facility drainage	Surface, Fill, Groundwater, Storm water	Asbestos, Metals (Lead, Zinc)	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present)
	Intake Basin	Sediment Upstream Sources		Upstream Sources	Sediment	Petroleum, PCBs, Solvents, Metals, Asbestos	6 - In-Water Sediment
	Tailrace 1		North of No. 1 Paper Machine	Facility leaks and groundwater drainage	Storm water, groundwater, soil, and sediment	Petroleum, PCBs, Solvents, Metals, Dioxins/Furans, Asbestos	2 - Tailraces
	Tailrace 2		Below No. 3 Paper Machine	Facility leaks and groundwater drainage	Storm water, groundwater, soil, and sediment	Petroleum, PCBs, Solvents, Metals, Dioxins/Furans, Asbestos	2 - Tailraces
	Mill H Tailrace		Below Mill H	Facility leaks and groundwater drainage	Storm water, groundwater, soil, and sediment	Petroleum, PCBs, Solvents, Metals, Dioxins/Furans, Asbestos	2 - Tailraces
	#2 Pump Station		Sediment trap	Facility drainage	Storm water, and sediment	Petroleum, PCBs, Solvents, Metals, Dioxins/Furans, Asbestos	1 -Storm Water / Waste Water System
	Former Fuel Oil AST (319,200 gallons)		None	N/A	N/A	N/A	N/A
-	Oil Dock		None	N/A	N/A	N/A	N/A
	Truck Dump	1968 37 x 108	Ground surface, Basement	Transformers (3) Fuels ASTs, Hydraulics	Soil, Fill, Groundwater	Petroleum, PCBs	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present)

Feature No.	Feature Name	Date and Size	Area of Environmental Concern	Description of Possible Source	Media Potentially Impacted (Sediment, Soil, Storm water, Surface Water, or Groundwater)	Potential Constituents of Interest	Proposed Phase II Sampling to Evaluate (see Table 2)
	Rail Spurs		Ground surface, subsurface	Ties, spills	Soil, Fill, Groundwater	Arsenic, Copper, Chromium, SVOCs	1 -Storm Water / Waste Water System 2 - Tailraces 3 - Soil/Fill 4 - Groundwater (if present)
	Former MgO AST		Ground surface, subsurface	Previously used as a Fuel AST for Sulfate Plant Boilers	Soil, Fill, Groundwater	Petroleum	1 -Storm Water / Waste Water System 2 - Tailraces
	Water Supply well Near N 56 fo	ear SW corner of rmer MgO AST	None	N/A	N/A	N/A	N/A

Information sources: Site Observations, Sanborn Maps, Historical Aerial Photographs, Historical Topographic Maps, City Directories, IRI Mill Layout Drawing, Waste Water Treatment System Drawing, Major Bulk Chemicals, Waste & Oil Mill Locations, Chemical and Raw Material Storage Map

Table 2 Conceptual Approach Phase II Environmental Site Assessment Blue Heron Mill Site and Main Office Building

No.	Media/Feature	Type of Sample	Purpose	COIs	Sample Location(s)	Notes
1	Storm Water / Waste Water	Bedded Sediment	Evaluate potential releases of COIs site wide	- VOCs - SVOCs - Metals - PCBs - Dioxins/Furans - Asbestos	- Pump Station #1 - Pump Station #2 - Pipe Tunnel - Clarifier	Composite samples; collect multiple depth intervals (if possible) to evaluate recent and historical releases; collection of samples dependent upon presence of sufficient sediment to sample and safe access to allow sampling
	System	Water	Evaluate potential releases of COIs site wide; evaluate potential releases from site via storm water	- VOCs - SVOCs - Metals, including hexavalent chromium - PCBs	- Pump Station #1 - Pump Station #2 - Pipe Tunnel - Clarifier	Sample of standing water in collection structure; collection of water during a storm event unlikely given time constraints and dry season.
2	Tailraces	Bedded Sediment	Evaluate potential releases from site that are not being captured by storm water system	- VOCs - SVOCs - Metals - PCBs - Dioxins/Furans - Asbestos	- Mill H Tailrace - Tailrace #1 - Tailrace #2	Samples to be collected on both sides of the tailrace dams; multiple depth intervals (if possible)
		Water	Evaluate potential releases from site that are not being captured by storm water system	- VOCs - SVOCs - Metals, including hexavalent chromium - PCBs	- Mill H Tailrace - Tailrace #1 - Tailrace #3	
3	Soil / Fill	Solid	Evaluate potential releases from discrete site features; evaluate fill characteristics	- VOCs - SVOCs - Metals (some locations) - TPH (some locations) - PCBs (some locations) - Asbestos (some locations)	~12 locations throughout site (see figure); locations related to current and former tanks, transformers (in use and decommissioned), fill, and railroad spurs (ballast and other sources)	Sample where possible; soil/fill may not be present at all locations
4	Groundwater	Water	Evaluate potential releases from discrete site features; evaluate groundwater quality both on-site and upgradient	- VOCs - SVOCs - Metals, including hexavalent chromium (some locations) - TPH (some locations)	~12 locations throughout site (see figure); locations related to current and former tanks, transformers (in use and decommissioned), fill, and railroad spurs (ballast and other sources)	Sample if groundwater is encountered during soil sampling; groundwater not expected to be observed in shallow soil/fill
5	Seeps	Water	Evaluate groundwater quality both on-site and upgradient	 - VOCs - SVOCs - Metals, including hexavalent chromium - PCBs? - Dioxins/Furans (bleach plant only)? 	Approximately 6 seeps in 4 locations throughout site (No. 1 Paper Machine, west of Sulphate Plant, east of Sulphate Plant by RR tracks, No. 3 Paper machine)	Sample where possible; some seeps may not have sufficient flow to allow sampling

Table 2 Conceptual Approach Phase II Environmental Site Assessment Blue Heron Mill Site and Main Office Building

No.	Media/Feature	Type of Sample	Purpose	COIs	Sample Location(s)	Notes
6	In-Water Sedimen	t Bedded Sediment	Evaluate sediment quality on submerged portion of subject parcel	- VOCs - SVOCs - Metals - PCBs - Dioxins/Furans	Various locations in in-take basin; exact number of samples TBD	Surface and subsurface samples; specific sampling intervals TBD
Lege	end:	COIs - Constituents of in	nterest			

SVOCs - Semi-volatile organic compounds

VOCs - Volatile organic compounds

PCBs - Polychlorinated biphenyls

Legend

Proposed Phase II ESA Sample Locations

- \bigcirc Soil and Groundwater
- Seep
- **-**Stormwater and Sediment
- \diamond Tailrace/Intake Basin Surface Water and Sediment

• Outfall (Abandoned)

— Tailrace (Approximate)

Aerial: ESRI Online Imagery Server, June 15, 2009

Figure 1 Proposed Sample Locations Phase II ESA Blue Heron Site Oregon City, Oregon

Environmental Resources Management 1001 SW 5th St, Suite 1010 Portland, Oregon 97204

From:	Erik Ipsen
To:	ROMERO Mike (ROMERO.Mike@deq.state.or.us)
Cc:	"Hope Whitney"; Claudia Powers (ckp@aterwynne.com); Brendan Robinson; Kim Marcus; Greg Menen
Subject:	RE: Blue Heron Mill Site Phase 2 Sampling - DEQ comments
Date:	Friday, August 24, 2012 9:58:52 AM
Attachments:	image001.jpg
	Potential Sample Locations082312.pdf
	Table 3 Sample Matrix 08 24 12.pdf
	image002.jpg

Hi Mike –

Once again, I wanted to thank you for your comments on the conceptual Phase II sampling approach at the Blue Heron site. We have reviewed your comments, prepared brief responses (provided below), and modified the sampling scope accordingly.

Attached are the deliverables that were promised at our meeting on July 23: a table providing details of the proposed sampling, and a detailed figure showing all proposed sampling locations. As discussed in the responses below, we will be providing a table summarizing the proposed laboratory reporting limits and the potentially applicable screening levels next week.

Please let Hope Whitney at Metro or me know if you have any questions or comments. Our tentative schedule is to conduct field work starting on September 7.

Regards – Erik

General Comments

1. The Phase 1 Environmental Site Assessment report was not provided and DEQ did not review it. However, the general outline of proposed sampling in Phase 2 appears to be an effort focused on the most obvious areas of concern based on operational history and previous investigations. Overall, the proposed effort should be effective in identifying the most probable environmental concerns at the property. The selected analytes and contaminants of interest (COIs) listed in Table 1 and 2 are appropriate based on the information provided.

Comment noted. Metro appreciates ODEQ's expedited and useful review of the proposed sampling activities.

2. Details of sampling methods, analytical methods and screening level values (SLVs) that analytical results will be compared to were not provided at the time of these comments. DEQ understands that a table detailing this will be provided to DEQ for input during the 2nd week of August. DEQ recommends that Metro and ERM develop a simple conceptual site model (CSM) to use in identifying potential exposure pathways and to determine the appropriate screening levels for the analytical data. SLVs for both ecological and human health receptors should be used where appropriate. See http://www.deq.state.or.us/pubs/reports.htm#Cleanup for guidance documents that can help in developing a CSM and screening levels. In particular, see the Risk-Based Decision Making document and the risk assessment guidance documents for the SLVs.

A table providing additional details of the proposed Phase II sampling, including analytical

methods, is attached to this email. A table summarizing proposed reporting limits and potentially applicable screening levels will be transmitted to ODEQ when complete (anticipated next week). Metro and ERM are currently evaluating ODEQ's recommendation to prepare a simple conceptual site mode. Issues being weighed are available time, resources, and existing site information, as well as the importance of having this information at this stage of the project. In addition, possible end uses of the property (and hence, future receptors) are still uncertain and being evaluated. Metro will transmit the CSM to ODEQ if and when one is prepared.

3. Stormwater management for the site will change and likely return to specific discharges from the site once the connection to the lagoons is severed. While a stormwater permit may not be required at the property in the future, consideration of potential environmental impacts related to stormwater will be useful in Metro's assessment of the site. It is obvious that some of the rationale in the proposed sampling is focused on this pathway and that actual stormwater samples may not be collected because of the seasonal timing of the sampling. DEQ's stormwater guidance for evaluating stormwater at upland sites located at http://www.deq.state.or.us/lq/cu/stmwtrguidance.htm contains useful information especially in screening and comparison tools that may help during this assessment.

Comment noted. ERM is familiar with this guidance and has incorporated the principles behind it into the proposed sampling.

4. If not already done in the Phase 1 ESA, an assessment of the locations and amounts of solids/soil accumulation at the site should be prepared and its potential for exposure to erosion or stormwater runoff discussed. This information can be used to determine sampling locations and help in the development of the CSM. This, coupled with site analytical data, will also help in the evaluation of potential future risks at the site after the tailraces are disconnected. A good understanding of stormwater drainage directions and patterns may also help in the evaluation of potential risks.

The amount of solids accumulation in the features to be sampled (i.e., pump stations, pipe tunnel, clarifier, and tailraces) will be performed as part of Phase II sampling, to the extent possible. A comprehensive evaluation of storm water solids accumulation at the site is beyond the current due diligence scope of work being executed at the site. An evaluation of the current storm water drainage system and options for future management is currently being performed by Metro.

5. It is important to note that DEQ's Water Quality Division is currently working with the site trustee to close out the NPDES permit at this property. A requirement of this closeout will be to remove solids from the tailraces on site. Details of the solids removal have not yet been determined. While Phase 2 sampling calls for some sampling of the tailraces, additional tailrace sampling locations could provide additional data that may better inform the future tailrace cleanout.

The main purpose of the tailrace sampling is to evaluate potential releases from the upland property to the tailraces as a means of evaluating possible spills and releases on the upland property. The proposed sampling (i.e., collection and analysis of composite samples from each tailrace) is appropriate to meet this due diligence sampling objective. While Metro understands that data collected as part of this Phase II may be useful in informing cleanout of the tailraces, and will share the results with the trustee, the purpose of the sampling from

Metro's perspective, is not to characterize the accumulated solids in the tailraces for purposes of evaluating removal and management options.

6. Based on the proposed sample locations in Figure 1, it does not appear that an investigation or survey is planned for the northern waterfront area north of pump station #2 up to the northernmost property boundary during this phase of work. It is not clear if this area was assessed in the Phase 1 ESA. This area appears to be well vegetated, has a natural shoreline and at least three historic outfalls. DEQ suggests that Metro/ERM consider some sort of assessment or survey of the area during this phase of work that focuses on current conditions, apparent runoff patterns, evidence of historic industrial use and any obvious environmental issues in the area. This information may prove useful to Metro in future considerations.

This area was assessed as part of the historical research of the site, which admittedly has not been shared with DEQ yet. Again we appreciate DEQ reviewing Metro's preliminary materials. Based on documents, historical aerials, and other information reviewed by ERM to date, there is no evidence of historical industrial activity in this area, and therefore no sampling in this area is proposed. In addition, due to the rocky nature of the area, it is not clear that sufficient soil is present to allow sampling. As mentioned above, an evaluation of the current storm water drainage system and options for future management is currently being performed by Metro.

7. The conceptual approach detailed in Table 2 does not include pesticides as a contaminant of interest (COI) at the site. Pesticide use was fairly common during the operational period of the facility and they are typically screened for in stormwater and soil evaluations. Consider analyzing appropriate media such as tailrace solids and soil/fill locations for bioaccumulative pesticides such as DDT unless specific knowledge of pesticides not being used on site exists.

The historical information reviewed by ERM to date does not indicate that there was widespread use of pesticides, although it is suspected that pesticides were used at the site consistent with typical industrial facilities. Pesticides are a ubiquitous constituent on both industrial properties, and in the Willamette River. As such, Metro does not believe that collection of these data are necessary at this stage for purposes of conducting environmental due diligence at the site. The need for these data will be re-evaluated as Metro's evaluation of the property progresses.

Specific Comments

1. Table 1 list spills under description of a possible source in a few of the numbered features. It is not clear what is known about these spills which makes evaluating the potential COIs for those areas (features) difficult.

The potential spills referenced in Table 1 are associated with the rail spurs and would include typical petroleum products, lubricants, and/or solvents. There is no available information specifically referencing spills along these rails spurs. Rather, the proposed sampling is based on ERM's experiences on other similar industrial facilities. Samples from rail spur areas are proposed for analysis of TPH, VOCs, SVOCs, metals, and PCBs.

2. Radiation source is listed as a possible source under several of the numbered features, but radionuclides are not listed under the potential COIs and are not included in the proposed

analytes in Table 2.

The radiation source mentioned in Table 1 is a Measurex 2002 scanning sensor (see photo below). The equipment is self-contained, located inside a building, and appeared to be in good condition. No releases from the equipment are suspected, and therefore no sampling is proposed at this time.

3. Features No. 16 and 17 lists USTs, rail ties and spills as possible sources, but Table 1 does not list petroleum and PCBs as potential COIs for these areas. However, Table 2 does indicate that PCBs and petroleum will be sampled for in the area. Rail ties may also include pentachlorophenol in addition to arsenic, copper and chromium. Consider adding this analyte to the mix.

As mentioned above, samples from rail spur areas are proposed for analysis of TPH, VOCs, SVOCs (including pentachlorophenol), metals, and PCBs.

4. Acid and caustic compounds are listed as possible sources in several features (2,30,33,34 35, 49, 56,57) yet only feature no. 39 has pH listed as a potential COI. Table 2 does not include pH in the COI or analyte list. pH is most likely to have effects on metals so at least be sure that this potential correlation is represented in the sampling plan.

As ODEQ correctly notes, pH impacts most notably affect metals concentrations. Analysis of metals is proposed for all but two of the Phase II samples.

5. The May 24th, 2011 soil investigation summary prepared by Bridgewater Group, Inc for Blue Heron Paper Company identified at least one area of PCB contamination in surficial soils in the former south substation area. It doesn't appear that this Phase 2 sampling effort is addressing that area unless the soil and groundwater sample near the former dye shop on Figure 1 is intended to capture it. The Bridgewater report does not include any narrative on the site conditions or the extent of soil in that area. If not addressed in the Phase 1, consider evaluating the site conditions at that are as described in general comment no. 4 during this phase of work.

Site conditions have been evaluated through several site visits and inspections, and more recently, a geophysical survey to evaluate the present of soil/fill for sampling. The Bridgewater investigation appears to have done a reasonably good job of delineating potential PCB impacts in soil from current and historical transformers at the site. However, there was only one sample collected from the old transformer storage area northwest of Building 19. Because this area is probably the most likely to have impacts from old transformers, Metro is proposing another sample in this area to confirm Bridgewater's findings.

Erik Ipsen, PE Partner

ERM 1001 SW 5th Ave, Suite 1010 Portland, Oregon 97204

Tel: +1 503 488 5014 (direct line) Tel: +1 503 488 5282 (switchboard) Mobile: +1 503 724 7998

www.erm.com erik.ipsen@erm.com

Begin forwarded message:

From: ROMERO Mike <<u>ROMERO.Mike@deq.state.or.us</u>> Date: August 6, 2012 10:32:03 AM PDT To: Hope Whitney <<u>Hope.Whitney@oregonmetro.gov</u>> Cc: SVETKOVICH Christine <<u>SVETKOVICH.Christine@deq.state.or.us</u>> Subject: Blue Heron Mill Site Phase 2 Sampling - DEQ comments

Hope,

In accordance with the agreement between DEQ and Metro to provide technical consultation and review of investigation plans, DEQ has reviewed the material presented by ERM describing the proposed Phase 2 sampling at the former Blue Heron Paper Mill. Our observations and comments are summarized for your consideration below:

General Comments

- The Phase 1 Environmental Site Assessment report was not provided and DEQ did not review it. However, the general outline of proposed sampling in Phase 2 appears to be an effort focused on the most obvious areas of concern based on operational history and previous investigations. Overall, the proposed effort should be effective in identifying the most probable environmental concerns at the property. The selected analytes and contaminants of interest (COIs) listed in Table 1 and 2 are appropriate based on the information provided.
- 2. Details of sampling methods, analytical methods and screening level values (SLVs) that analytical results will be compared to were not provided at the time of these comments. DEQ understands that a table detailing this will be provided to DEQ for input during the 2nd week of August. DEQ recommends that Metro and ERM develop a simple conceptual site model (CSM) to use in identifying potential exposure pathways and to determine the appropriate screening levels for the analytical data. SLVs for both ecological and human health receptors should be used where appropriate. See

http://www.deq.state.or.us/pubs/reports.htm#Cleanup for guidance documents that can help in developing a CSM and screening levels. In particular, see the Risk-Based Decision Making document and the risk assessment guidance documents for the SLVs.

3. Stormwater management for the site will change and likely return to specific discharges from the site once the connection to the lagoons is severed. While a stormwater permit may not be required at the property in the future, consideration of potential environmental impacts related to stormwater will be useful in Metro's assessment of the site. It is obvious that some of the rationale in the proposed sampling is focused on this pathway and that actual stormwater samples may not be collected because of the seasonal timing of the sampling. DEQ's stormwater guidance for evaluating stormwater at upland sites located at

http://www.deq.state.or.us/lq/cu/stmwtrguidance.htm contains useful information especially in screening and comparison tools that may help during this assessment.

- 4. If not already done in the Phase 1 ESA, an assessment of the locations and amounts of solids/soil accumulation at the site should be prepared and its potential for exposure to erosion or stormwater runoff discussed. This information can be used to determine sampling locations and help in the development of the CSM. This, coupled with site analytical data, will also help in the evaluation of potential future risks at the site after the tailraces are disconnected. A good understanding of stormwater drainage directions and patterns may also help in the evaluation of potential risks.
- 5. It is important to note that DEQ's Water Quality Division is currently working with the site trustee to close out the NPDES permit at this property. A requirement of this closeout will be to remove solids from the tailraces on site. Details of the solids removal have not yet been determined. While Phase 2 sampling calls for some sampling of the tailraces, additional tailrace sampling locations could provide additional data that may better inform the future tailrace cleanout.
- 6. Based on the proposed sample locations in Figure 1, it does not appear that an investigation or survey is planned for the northern waterfront area north of pump station #2 up to the northernmost property boundary during this phase of work. It is not clear if this area was assessed in the Phase 1 ESA. This area appears to be well vegetated, has a natural shoreline and at least three historic outfalls. DEQ suggests that Metro/ERM consider some sort of assessment or survey of the area during this phase of work that focuses on current conditions, apparent runoff patterns, evidence of historic industrial use and any obvious environmental issues in the area. This information may prove useful to Metro in future considerations.

7. The conceptual approach detailed in Table 2 does not include pesticides as a contaminant of interest (COI) at the site. Pesticide use was fairly common during the operational period of the facility and they are typically screened for in stormwater and soil evaluations. Consider analyzing appropriate media such as tailrace solids and soil/fill locations for bioaccumulative pesticides such as DDT unless specific knowledge of pesticides not being used on site exists.

Specific Comments

- 1. Table 1 list spills under description of a possible source in a few of the numbered features. It is not clear what is known about these spills which makes evaluating the potential COIs for those areas (features) difficult.
- 2. Radiation source is listed as a possible source under several of the numbered features, but radionuclides are not listed under the potential COIs and are not included in the proposed analytes in Table 2.
- 3. Features No. 16 and 17 lists USTs, rail ties and spills as possible sources, but Table 1 does not list petroleum and PCBs as potential COIs for these areas. However, Table 2 does indicate that PCBs and petroleum will be sampled for in the area. Rail ties may also include pentachlorophenol in addition to arsenic, copper and chromium. Consider adding this analyte to the mix.
- 4. Acid and caustic compounds are listed as possible sources in several features (2,30,33,34 35, 49, 56,57) yet only feature no. 39 has pH listed as a potential COI. Table 2 does not include pH in the COI or analyte list. pH is most likely to have effects on metals so at least be sure that this potential correlation is represented in the sampling plan.
- 5. The May 24th, 2011 soil investigation summary prepared by Bridgewater Group, Inc for Blue Heron Paper Company identified at least one area of PCB contamination in surficial soils in the former south substation area. It doesn't appear that this Phase 2 sampling effort is addressing that area unless the soil and groundwater sample near the former dye shop on Figure 1 is intended to capture it. The Bridgewater report does not include any narrative on the site conditions or the extent of soil in that area. If not addressed in the Phase 1, consider evaluating the site conditions at that are as described in general comment no. 4 during this phase of work.

Feel free to contact me if you or ERM have any questions regarding these comments.

Mike

Michael Romero Northwest Region Cleanup Section (503) 229-5563 Romero.Mike@deq.state.or.us

Legend

Proposed Phase II ESA Sample Locations

- Soil and Groundwater
- Seep
- Storm Water and Storm Water Solids
- ٠ Intake Basin Sediment
- Tailrace Solids (Composite Sample) \diamond
- Tailrace Water

- Outfall (abandoned)
- Oregon City Outfall (active)
- ---- Oregon City Storm Sewer
- **—** Tailrace (Approximate)
- Blue Heron Site Boundary

DRAFT

Figure 1 Proposed Sample Locations Phase II ESA Blue Heron Site Oregon City, Oregon

Environmental Resources Management 1001 SW 5th St, Suite 1010 Portland, Oregon 97204

	Sample			Sample Type		Metals (As, Cd, Cr, Cu, Ni, Pb, Zn)	Нg	Cr VI	Asbestos	ТРН	PCB Aroclors	Dioxins/ Furans	VOCs	SVOCs
Site Feature	Location	Sample ID	Sample Depth	Grab/ Composite	Media	USEPA 6010B/6020	USEPA 7470A/7471A	USEPA 3060A/ 7196A	USEPA 600	NWTPH-Dx, Gx	USEPA 8082B	AXYS Method	USEPA 8260C	USEPA 8270D/ 8270-SIM
Building 01 UST	F01-01	F01-01-Soil	0 to refusal	Grab	Soil/Fill	Х				Х			Х	Х
Building 01 UST	F01-02	F01-02-Soil	0 to refusal	Grab	Soil/Fill	Х				Х			х	
Building 01 UST	F01-03	F01-03-Soil	0 to refusal	Grab	Soil/Fill	Х				Х			Х	
Truck Dump	TD-01	TD-01-Soil	0 to refusal	Grab	Soil/Fill					Х	Х		Х	Х
Truck Dump	TD-02	TD-02-Soil	0 to refusal	Grab	Soil/Fill					Х	Х		Х	Х
Building 07/Spur	F07-01	F07-01-Soil	0 to refusal	Grab	Soil/Fill	Х				Х	Х		Х	Х
Building 16-17/Spur	F16-01	F16-01-Soil	0 to refusal	Grab	Soil/Fill	Х				Х			Х	Х
Building 16/UST	F16-02	F16-02-Soil	0 to refusal	Grab	Soil/Fill	Х				Х			Х	Х
Building 18 Mill O	F18-01	F18-01-Soil	0 to refusal	Grab	Soil/Fill	Х			Х	Х	Х		Х	
Building 19	F19-01	F19-01-Soil	0 to refusal	Grab	Soil/Fill	Х				Х	Х		Х	
Building 22/Millwright Shop	F21-01	F21-01-Soil	0 to refusal	Grab	Soil/Fill	Х				Х			Х	
Building 28/Frmr Dye Shop	F28-01	F28-01-Soil	0 to refusal	Grab	Soil/Fill	Х		Х		Х	Х		Х	Х
Building 38-Welding/UST	F38-01	F38-01-Soil	0 to refusal	Grab	Soil/Fill	Х				Х	Х		Х	
Building 42/Chemical Storage	F42-01	F42-01-Soil	0 to refusal	Grab	Soil/Fill	Х				Х			Х	
Building 46/Shipping Shed	F47-01	F47-01-Soil	0 to refusal	Grab	Soil/Fill	Х				Х			Х	Х
Feature 57/Fuel AST	F57-01	F57-01-Soil	0 to refusal	Grab	Soil/Fill	Х				Х			Х	Х
Pipe Tunnel	-	F53-01-Shallow	0 to 6 inches	Grab	Storm Water Solids	Х			Х	Х	Х	Х		Х
Pipe Tunnel	F53-01	F53-01-Deep	Bottom 6 inches	Grab	Storm Water Solids	Х			Х	Х	Х	Х		Х
Pipe Tunnel		F53-01-SW	Storm Water	Grab	Storm Water	Х		Х		Х			Х	X
Pump Station #1		PS1-01-Shallow	0 to 6 inches	Grab	Storm Water Solids	X			X	X	X	X		X
Pump Station #1	PS1-01	PS1-01-Deep	Bottom 6 inches	Grab	Storm Water Solids	Х			Х	Х	Х	Х		X
Pump Station #1		PS1-01-SW	Storm Water	Grab	Storm Water	X		Х		X			Х	X
Pump Station # 2	700 04	PS2-01-Shallow	0 to 6 inches	Grab	Storm Water Solids	Х			Х	Х	Х	Х		X
Pump Station # 2	PS2-01	PS2-01-Deep	Bottom 6 inches	Grab	Storm Water Solids	X			X	X	X	X		X
Pump Station # 2		PS2-01-SW	Storm Water	Grab	Storm Water	X	N/			X	N.		Х	X
Clarifier		F55-01-Shallow	0 to 6 inches	Grab	Storm Water Solids	X	X		X	X	X	X		X
Clarifier	F55-01	F55-01-Deep	Bottom 6 inches	Grab	Storm Water Solids	X	X		X	X	X	X		X
Clarifier Blood Direct Court	T 20.04	F55-01-SW	Storm Water	Grab	Storm Water	X	X	X		X			X	X
Bleach Plant Seep	F39-01	F39-01-SP	Seep Water	Grab	Seep Water	X				X			X	X
Upgradient Seep	F40-01	F40-01-SP	Seep Water	Grab	Seep Water	X				X			X	X
Possible Tailrace H Seen	F42-02	F42-01-5F	Seep Water	Grab	Seep Water	A V				A Y			X V	X
Paper Machine 3 Seep	F13-01	F13-01-SP	Seep Water	Grab	Seep Water	X				X			X	X
Paper Machine 3 Seep	F13-02	F13-02-SP	Seep Water	Grab	Seep Water	X				x			X	x
Tailrace 1	TTD: Of TTD: OR	TR1-Shallow	0 to 6 inches	Composite	Tailrace Solids	Х	Х		Х	Х	Х	Х		Х
Tailrace 1	1K1-01, 1K1-02	TR1-Deep	Bottom 6 inches	Composite	Tailrace Solids	Х	Х		Х	Х	Х	Х		Х
Tailrace 2	TR2-01, TR2-02,	TR2-Shallow	0 to 6 inches	Composite	Tailrace Solids	Х	Х		Х	Х	Х	Х		Х
Tailrace 2	TR2-03	TR2-Deep	Bottom 6 inches	Composite	Tailrace Solids	Х			Х	Х	Х	Х		Х
Tailrace H	TRH-01, TRH-02,	TRH-Shallow	0 to 6 inches	Composite	Tailrace Solids	Х			Х	Х	Х	Х		Х
Tailrace H	TRH-03	TRH-Sdeep	Bottom 6 inches	Composite	Tailrace Solids	Х			Х	Х	Х	Х		Х
Tailrace 1	TR1-01	TR1-01-SW	Surface Water	Grab	Tailrace Water	Х	Х	Х		Х			Х	Х
Tailrace 2	TR2-01	TR2-01-SW	Surface Water	Grab	Tailrace Water	Х		X		X			X	X
Tailrace H	TRH-01	TRH-01-SW	Surface Water	Grab	Tailrace Water	X	Х	Х		Х	~	~	Х	X
Intake Basin	IB-01	IB-01-Shallow	0 to 6 inches	Grab	Intake Basin Sediment	X					X	X		X
Intaké Basin Intaké Basin		IB-01-Deep	Bottom 6 inches	Grab	Intake Basin Sediment	X					X	X		X
Intake Dasin	IB-02	ID-02-Shallow	U to 6 inches	Grab	Intake basin Sediment	X					X	X		A Y
Intake Basin		IB-02-Deep IB-03-Shallow	0 to 6 inches	Grab	Intake Basin Sediment	X					х Х	X		X
Intake Basin	IB-03	IB-03-Deen	Bottom 6 inches	Grab	Intake Basin Sediment	X					X	X		X
		то со веср	Total Number of Samala	ie State	and basin ocument	47	8	7	15	43	27	20	20	42
			Sample of Sample	0		*/	0	1	10	-10	21	20	<u> </u> 27	+4

Notes & Key:	Notes & Key (continued):
bgs = below ground surface	As Arsenic
AXYS Method = USEPA Method 1613B (i.e., AXYS MLA-017)	Cd Cadmium
NWTPH = Northwest Method Total Petroleum Hydrocarbons	Cr Chromium
PCB = Polychlorinated Biphenyls	Cu Copper
SIM = Selective Ion Method for polycyclic aromatic hydrocarbons	Hg Mercury
SVOCs = Semivolatile Organic Compounds (phenols, phthalates, polycyclic aromatic hydrocarbons)	Ni Nickel
TPH = Total Petroleum Hydrocarbons	Pb Lead
USEPA = United States Environmental Protection Agency	Zn Zinc
UST = Underground Storage Tank	Cr VI Hexavalent Chromium

Storm Water and storm water solids sample location Seep water sample location	Soil and Groundwater sample location. If impacts to soil are observed during field activities, additional soil samples will be collected from the zone of impact and appropriate analyses selected to characterize the observed impacts.
Seep water sample location	Storm Water and storm water solids sample location
	Seep water sample location
Surface water and solids sample location	Surface water and solids sample location
Intake basin sediment sample location	Intake basin sediment sample location

Table 3 Sample Matrix Phase II Environmental Site Assessment Blue Heron Mill Site and Main Office Building

From:	Erik Ipsen
To:	ROMERO Mike (ROMERO.Mike@deq.state.or.us)
Cc:	<u>Hope Whitney (Hope.Whitney@oregonmetro.gov);</u> <u>Claudia Powers (ckp@aterwynne.com);</u> <u>Brendan Robinson;</u> <u>SVETKOVICH Christine</u>
Subject:	Reporting Limits and Preliminary Screening Values for Blue Heron Phase II ESA Sampling
Date:	Wednesday, September 12, 2012 3:23:03 PM
Attachments:	Tables 4A Preliminary Water Screening Level Values 2012 09 12.pdf
	Tables 4B Preliminary Solid Screening Level Values 2012 09 12.pdf

Mike –

As requested, please find attached tables summarizing the reporting limits and preliminary screening values for the Blue Heron Phase II ESA Sampling. Please let me know if you have any questions.

Sampling began last Friday/Saturday and will conclude (hopefully) this Friday/Saturday. Sediment sampling in the in-take basin is scheduled for Friday. Overall, ee have been able to get samples, but it has been a bit slow as was expected.

One thing I wanted to alert you to: while sampling Pump Station No. 2, the sampling team noticed free product over the standing water in the pump station. The team believes it might be from a hydraulic oil spill that occurred recently at the site. I understand you might already be aware of this release. We have not yet sampled the pipe tunnel, pump station No. 2, or the clarifier, so are not aware if free product is present in those features.

Please let me know if you have any questions.

Regards - Erik

Erik Ipsen, PE Partner

ERM 1001 SW 5th Ave, Suite 1010 Portland, Oregon 97204

Tel: +1 503 488 5014 (direct line) Tel: +1 503 488 5282 (switchboard) Mobile: +1 503 724 7998

www.erm.com erik.ipsen@erm.com

						Groundwater ¹		Storm Water and	l Tailrace Water ²		
Constituent	CAS Number	USEPA Analytical	Sample Quantitation Limit	Method Detection	Volatilization to Outdoor Air	Vapor Intrusion into Buildings	Groundwater in Excavation	Human Health	(Consumption)	Freshwat	er AWQC
		Method	Quantitation Limit	Limit	Occupational	Occupational	Construction & Excavation Worker	Water + Organism	Organism Only	Acute	Chronic
Metals											
Arsenic	7440-38-2	6020A	0.5	0.1	-	-	5,800	2.1	2.1	-	-
Cadmium	7440-43-9	6020A	0.02	0.005	-	-	57,000	-	-	3.9	1.1
Chromium	7440-47-3	6020A	0.2	0.04	-	-	-	-	-	-	-
Copper	7440-50-8	6020A	0.02	0.1	-	-	5,000,000	1300	-	18	12
Lead	7439-92-1	6020A	0.02	0.005	-	-	-	-	-	-	-
Nickel	7440-02-0	6020A	0.2	0.03	-	-	1.2E+07	140	170	1400	160
Zinc	7440-66-6	6020A	0.5	0.2	-	-	-	2100	2600	120	110
Hexavalent Chromium	18540-29-9	7196A	50	20	-	-	8,700	-	-	-	-
Hexavalent Chromium-LL	18540-29-9	7196A	50	4	-	-	8,700	-	-	-	-
Mercury	7439-97-6	7470A	0.2	0.02	-	-	-	-	-	2.4	0.012
Volatile Organic Carbons (VOCs)											
1,1,1,2-Tetrachloroethane	630-20-6	8260C	0.5	0.11	-	-	-	-	-	-	-
1,1,1-Trichloroethane (TCA)	71-55-6	8260C	0.5	0.075	-	-	1,100,000	-	-	-	-
1,1,2,2-Tetrachloroethane	79-34-5	8260C	0.5	0.16	-	-	-	0.12	0.40	-	-
1,1,2-Trichloroethane	79-00-5	8260C	0.5	0.14	19,000	8,800	990	0.44	1.6	-	-
1,1-Dichloroethane	75-34-3	8260C	0.5	0.077	-	-	4,300,000	-	-	-	-
1,1-Dichloroethene	75-35-4	8260C	0.5	0.08	-	340,000	43,000	230	710	-	-
I,I-Dichloropropene	563-58-6	8260C	0.5	0.089	-	-	-	-	-	-	-
1,2,3-Trichlorobenzene	87-61-6	8260C	2	0.11	-	-	-	-	-	-	-
1,2,3-1richloropropane	96-18-4	8260C	0.5	0.2	-	-	-	-	-	-	-
1,2,4-1richlorobenzene	120-82-1	8260C	2	0.096	-	-	-	6.4	7.0	-	-
1,2,4-Trimethylbenzene	95-63-6	8260C	2	0.069	-	-	1,700	-	-	-	-
1,2-Dibromo-3-chloropropane	96-12-8	8260C	2	0.2	-	-	-	-	-	-	-
1,2-Dibromoethane (EDB)	106-93-4	8260C	2	0.1	960	690	28	-	-	-	-
1,2-Dichlorobenzene	95-50-1	8260C	0.5	0.12	-	-	37,000	110	130	-	-
1,2-Dichloroethane (EDC)	107-06-2	8260C	0.5	0.08	9,500	3,800	630	0.35	3.7	-	-
1,2-Dichloropropane	78-87-5	8260C	0.5	0.095	-	-	-	-	-	-	-
1,3,5-Trichlorobenzene	108-70-3	8260C	5	0.11	-	-	-	-	-	-	-
1,3,5-Trimethylbenzene	108-67-8	8260C	2	0.089	-	-	-	-	-	-	-
1,3-Dichlorobenzene	541-73-1	8260C	0.5	0.1	-	-	-	80	96	-	-
1,3-Dichloropropane	142-28-9	8260C	0.5	0.14	-	-	-	-	-	-	-
1,4-Dichlorobenzene	106-46-7	8260C	0.5	0.12	20,000	5,700	1,500	16	19	-	-
2,2-Dichloropropane	594-20-7	8260C	0.5	0.06	-	-	-	-	-	-	-
2-Butanone (MEK)	78-93-3	8260C	20	1.9	-	-	-	-	-	-	-
2-Chlorotoluene	95-49-8	8260C	2	0.1	-	-	-	-	-	-	-
2-Hexanone	591-78-6	8260C	20	2.7	-	-	-	-	-	-	-
4-Chlorotoluene	106-43-4	8260C	2	0.13	-	-	-	-	-	-	-
4-Isopropyltoluene	99-87-6	8260C	2	0.06	-	-	-	-	-	-	-
4-Methyl-2-pentanone (MIBK)	108-10-1	8260C	20	2.6	-	-	-	-	-	-	-
Acetone	67-64-1	8260C	20	3.3	-	-	-	-	-	-	-
Benzene	71-43-2	8260C	0.5	0.062	-	-	-	-	-	-	-

Table 4A

Proposed Analytes, Preliminary Screening Levels, and Laboratory Limits-Water Phase II Environmental Site Assessment Blue Heron Mill Site and Main Office Building

						Groundwater ¹		Storm Water and Tailrace Water ²						
Constituent	CAS Number	USEPA Analytical	Sample Quantitation Limit	Method Detection	Volatilization to Outdoor Air	Vapor Intrusion into Buildings	Groundwater in Excavation	Human Health	(Consumption)	Freshwat	er AWQC			
		Method	Quantitation Linit	Limit	Occupational	Occupational	Construction & Excavation Worker	Water + Organism	Organism Only	Acute	Chronic			
Bromobenzene	108-86-1	8260C	2	0.12	-	-	-	-	-	-	-			
Bromochloromethane	74-97-5	8260C	0.5	0.16	-	-	-	-	-	-	-			
Bromodichloromethane	75-27-4	8260C	0.5	0.091	9,300	5,600	450	-	-	-	-			
Bromoform	75-25-2	8260C	0.5	0.16	1,100,000	1,100,000	14,000	-	-	-	-			
Bromomethane	74-83-9	8260C	0.5	0.1	170,000	36,000	1,200	-	-	-	-			
Carbon Disulfide	75-15-0	8260C	0.5	0.069	-	-	-	-	-	-	-			
Carbon Tetrachloride	56-23-5	8260C	0.5	0.096	5,400	790	1,700	0.1	0.16	-	-			
Chlorobenzene	108-90-7	8260C	0.5	0.11	-	-	10,000	0.000081	0.000081	2.4	0.0043			
Chloroethane	75-00-3	8260C	0.5	0.16	-	-	2,400,000	-	-	19	11			
Chloroform	67-66-3	8260C	0.5	0.072	5,500	1,200	720	74	160	-	-			
Chloromethane	74-87-3	8260C	0.5	0.068	2,100,000	320,000	22,000	0.31	1.3	-	-			
cis-1,2-Dichloroethene	156-59-2	8260C	0.5	0.067	-	-	24,000	-	-	-	-			
cis-1,3-Dichloropropene	10061-01-5	8260C	0.5	0.18	-	-	-	0.30	2.1	-	-			
Dibromochloromethane	124-48-1	8260C	0.5	0.14	-	-	-	-	-	-	-			
Dibromomethane	74-95-3	8260C	0.5	0.15	-	-	-	-	-	-	-			
Dichlorodifluoromethane	75-71-8	8260C	0.5	0.13	-	-	-	-	-	-	-			
Ethyl Ether	60-29-7	8260C	1	0.075	-	-	-	-	-	-	-			
Ethylbenzene	100-41-4	8260C	0.5	0.05	41,000	7,400	4,400	160	210	-	-			
Hexachlorobutadiene	87-68-3	8260C	2	0.11	-	-	-	0.36	1.8	-	-			
Isopropylbenzene	98-82-8	8260C	2	0.051	-	-	-	-	-	-	-			
m,p-Xylenes	179601-23-1	8260C	0.5	0.11	-	-	23,000	-	-	-	-			
Methylene Chloride	75-09-2	8260C	2	0.1	-	-	-	4.3	59	-	-			
Naphthalene	91-20-3	8260C	2	0.88	16,000	10,000	500	-	-	-	-			
n-Butylbenzene	104-51-8	8260C	2	0.054	-	-	-	-	-	-	-			
n-Propylbenzene	103-65-1	8260C	2	0.054	-	-	-	-	-	-	-			
o-Xylene	95-47-6	8260C	0.5	0.074	-	-	-	-	-	-	-			
sec-Butylbenzene	135-98-8	8260C	2	0.062	-	-	-	-	-	-	-			
Styrene	100-42-5	8260C	0.5	0.089	-	-	160,000	-	-	-	-			
tert-Butylbenzene	98-06-6	8260C	2	0.059	-	-	-	-	-	-	-			
Tetrachloroethene (PCE)	127-18-4	8260C	0.5	0.099	-	32,000	33,000	0.24	0.33	-	-			
Tetrahydrofuran	109-99-9	8260C	5	0.94	-	-	-	-	-	-	-			
Toluene	108-88-3	8260C	0.5	0.054	-	-	210,000	720	1500	-	-			
trans-1,2-Dichloroethene	156-60-5	8260C	0.5	0.072	-	-	-	-	-	-	-			
trans-1,3-Dichloropropene	10061-02-6	8260C	0.5	0.068	-	-	_	-	-	-	-			
Trichloroethene (TCE)	79-01-6	8260C	0.5	0.1	19,000	3,300	3,000	1.4	3.0	-	-			
Trichlorofluoromethane	75-69-4	8260C	0.5	0.12		340,000	160,000	-	-	_	-			
Vinyl Chloride	75-01-4	8260C	0.5	0.075	6.800	910	1,200	0.023	0.24	-	_			
Semivolatile organic carbons (SVOCs)					-,		,							
1.2.4-Trichlorobenzene	120-82-1	8270D	10	0.36	-	-	-	6.4	7.0	-	-			
1,2-Dichlorobenzene	95-50-1	8270D	10	0.43	-	-	37.000	110	130	_	-			
1,2-Diphenvlhvdrazine	122-66-7	8270D	10	0.51	-	-	-	-		-	-			
1.3-Dichlorobenzene	541-73-1	8270D	10	0.35	-	-	-	80	96	-	-			
1,4-Dichlorobenzene	106-46-7	8270D	10	0.32	20,000	5,700	1,500	16	19	_	_			
2,3,4,6-Tetrachlorophenol	58-90-2	8270D	10	0.55	-	-	-	-		-	-			
2,4,5-Trichlorophenol	95-95-4	8270D	10	0.38	_	_	-	330	360	-	-			
2,4,6-Trichlorophenol	88-06-2	8270D	10	0.2	-	-	9,900	0.23	0.24	-	-			
2,4-Dichlorophenol	120-83-2	8270D	10	0.3	-	-	-	-	-	-	-			
-														

						Groundwater ¹		Storm Water and Tailrace Water ²						
Constituent	CAS Number	USEPA Analytical	Sample Quantitation Limit	Method Detection	Volatilization to Outdoor Air	Vapor Intrusion into Buildings	Groundwater in Excavation	Human Health	(Consumption)	Freshwat	er AWQC			
		Method	Quantitation	Limit	Occupational	Occupational	Construction & Excavation Worker	Water + Organism	Organism Only	Acute	Chronic			
2,4-Dimethylphenol	105-67-9	8270D	10	0.26	-	-	-	76	85	-	-			
2,4-Dinitrophenol	51-28-5	8270D	25	2.2	-	-	-	62	530	-	-			
2,4-Dinitrotoluene	121-14-2	8270D	10	0.27	-	-	-	0.084	0.34	-	-			
2,6-Dinitrotoluene	606-20-2	8270D	10	0.35	-	-	29,000	-	-	-	-			
2-Chloronaphthalene	91-58-7	8270D	10	0.29	-	-	-	-	-	-	-			
2-Chlorophenol	95-57-8	8270D	10	0.31	-	-	-	-	-	-	-			
2-Methyl-4,6-dinitrophenol	534-52-1	8270D	25	2.1	-	-	-	-	-	-	-			
2-Methylnaphthalene	91-57-6	8270D	10	0.24	-	-	-	-	-	-	-			
2-Methylphenol	95-48-7	8270D	10	0.33	-	-	-	-	-	-	-			
2-Nitroaniline	88-74-4	8270D	25	0.34	-	-	-	-	-	-	-			
2-Nitrophenol	88-75-5	8270D	10	0.37	-	-	-	-	-	-	-			
3,3'-Dichlorobenzidine	91-94-1	8270D	25	0.27	-	-	460	0.0027	0.0028	-	-			
3-Nitroaniline	99-09-2	8270D	25	3.3	-	-	-	-	-	-	-			
4-Bromophenyl Phenyl Ether	101-55-3	8270D	10	0.27	-	-	-	-	-	-	-			
4-Chloro-3-methylphenol	59-50-7	8270D	10	0.49	-	-	-	-	-	-	-			
4-Chloroaniline	106-47-8	8270D	10	0.38	-	-	-	-	-	-	-			
4-Chlorophenyl Phenyl Ether	7005-72-3	8270D	10	0.28	-	-	-	-	-	-	-			
4-Methylphenol	106-44-5	8270D	10	0.48	-	-	-	-	-	-	-			
4-Nitroaniline	100-01-6	8270D	25	4	-	-	-	-	-	-	-			
4-Nitrophenol	100-02-7	8270D	25	1.9	-	-	-	-	-	-	-			
Acenaphthene	83-32-9	8270D	10	0.28	-	-	-	95	99	-	-			
Acenaphthylene	208-96-8	8270D	10	0.24	-	-	-	-	-	-	-			
Acetophenone	98-86-2	8270D	10	0.6	-	-	-	-	-	-	-			
Aniline	62-53-3	8270D	25	0.49	-	-	-	-	-	-	-			
Anthracene	120-12-7	8270D	10	0.61	-	-	-	2900	4000	-	-			
Atrazine	1912-24-9	8270D	10	0.46	-	-	_	-	-	-	-			
Benz(a)anthracene	56-55-3	8270D	10	0.59	-	-	9.1	0.000018	0.00002	-	-			
Benzaldehyde	100-52-7	8270D	10	0.5	-	-		-	-	-	-			
Benzo(a)pyrene	50-32-8	8270D	10	0.65	-	-	0.53	0.0013	0.0018	_	-			
Benzo(b)fluoranthene	205-99-2	8270D	10	0.58	-	-	-	0.0013	0.0018	_	-			
Benzo(g,h,i)pervlene	191-24-2	8270D	10	0.81	-	-	-	-	-		-			
Benzo(k)fluoranthene	207-08-9	8270D	10	0.83	-	-	_	0.0013	0.0018	-	-			
Benzoic Acid	65-85-0	8270D	25	5.8	-	-	_	-	-	_	-			
Benzyl Alcohol	100-51-6	8270D	10	0.38	-	-	-	_	-	_	-			
Biphenyl	92-52-4	8270D	10	0.66	-	-	_	-	-	-	-			
Bis(2-chloroethoxy)methane	111-91-1	8270D	10	0.28	_	-	-	-	-	-	-			
Bis(2-chloroethyl) Ether	111-44-4	8270D	10	0.33	_	-	-	-	-	-	-			
Bis(2-chloroisopropyl) Ether	39638-32-9	8270D	10	0.31	-	-	-	-	-	-	-			
Bis(2-ethylhexyl) Phthalate	117-81-7	8270D	10	1.9	-	-	-	-			-			
Butyl Benzyl Phthalate	85-68-7	8270D	10	0.47	-	-	-	190	190	-	-			
Caprolactam	105-60-2	8270D	10	0.58		-	-	-	-	-	-			
Carbazole	86-74-8	8270D	10	0.36		-	-	-	_	_	-			
Chrysene	218-01-9	8270D	10	0.79	-	-	-	0.0013	0.0018	-	-			
Dibenz(a,h)anthracene	53-70-3	8270D	10	0.75	-	-	0.21	0.0013 0.0018		-	-			
Dibenzofuran	132-64-9	8270D	10	0.33	_	-	-	-	-	-	-			
Diethyl Phthalate	84-66-2	8270D	10	0.29		-	-	3800	4400	_	-			
Dimethyl Phthalate	131-11-3	8270D	10	0.25	-	-	-	84000	110000	-	-			

		USEPA Analytical	Sample Quantitation Limit	Method Detection Limit		Groundwater ¹		Storm Water and Tailrace Water ²					
Constituent	CAS Number				Volatilization to Outdoor Air	Vapor Intrusion into Buildings	Groundwater in Excavation	Human Health	(Consumption)	Freshwater AWQC			
		Method			Occupational	Occupational	Construction & Excavation Worker	Water + Organism	Organism Only	Acute	Chronic		
Di-n-butyl Phthalate	84-74-2	8270D	10	0.65	-	-	-	400	450	-	-		
Di-n-octyl Phthalate	117-84-0	8270D	10	0.63	-	-	-	-	-	-	-		
Fluoranthene	206-44-0	8270D	10	0.65	-	-	-	14	14	-	-		
Fluorene	86-73-7	8270D	10	0.32	-	-	-	390	530	-	-		
Hexachlorobenzene	118-74-1	8270D	10	0.63	830	310	8.1	0.000029	0.000029	-	-		
Hexachlorobutadiene	87-68-3	8270D	10	0.29	-	-	-	0.36	1.8	-	-		
Hexachlorocyclopentadiene	77-47-4	8270D	10	1.2	-	-	-	30	110	-	-		
Hexachloroethane	67-72-1	8270D	10	0.29	-	-	2,700	0.29	0.33	-	-		
Indeno(1,2,3-cd)pyrene	193-39-5	8270D	10	0.68	-	-	-	0.0013	0.0018	-	-		
Isophorone	78-59-1	8270D	10	0.25	-	-	-	27	96	-	-		
Naphthalene	91-20-3	8270D	10	0.37	16,000	10,000	500	-	-	-	-		
Nitrobenzene	98-95-3	8270D	10	0.57	-	-	-	14	69	-	-		
N-Nitrosodimethylamine	62-75-9	8270D	25	0.48	-	-	-	0.00068	0.30	-	-		
N-Nitrosodi-n-propylamine	621-64-7	8270D	10	0.5	-	-	-	0.0046	0.051	-	-		
N-Nitrosodiphenylamine	86-30-6	8270D	10	0.48	-	-	-	0.55	0.60	-	-		
Pentachlorophenol	87-86-5	8270D	25	2.4	-	-	-	-	-	-	-		
Phenanthrene	85-01-8	8270D	10	0.48	-	-	-	-	-	-	-		
Phenol	108-95-2	8270D	10	0.32	-	-	-	-	-	-	-		
Pyrene	129-00-0	8270D	10	0.73	-	-	-	290	400	-	-		
Pyridine	110-86-1	8270D	25	7.5	-	-	-	-	-	-	-		
Total Petroleum Hydrocarbons													
Diesel Range Organics	68334-30-5	NWTPH-Dx	250	8.2	-	-	-	-	-	-	-		
Gasoline Range Organics	8006-61-9	NWTPH-Gx	250	13	-	-	-	-	-	-	-		

Notes:

Concentrations are listed in micrograms per liter ($\mu g/L$) Shaded cells indicate that the screening level is less than the Sample Quantitation Limit.

1 = Risk Based Decision Making criteria

2 = Criteria are derived from the Aquatic Life Criteria Tables 20 and 33A and Human Health Criteria Table 40, approved by EPA on 17 October 2011. AWQC = Ambient Water Quality Criteria from OAR 340-040 (2004)

DEQ = Oregon Department of Environmental Quality

MCL =Maximum Contaminant Level (USEPA. Regional Screening Levels (RSL) for Chemical Contaminants at Superfund Sites. RSL Table Update. Sept 2008).

TEQ = Toxicity Equivalence Quotient

					Intake Basin Sediment									Soil, Storm Water Solids. and Tailrace Solids								
Constituent	CAS Number	USEPA Analytical	Sample Ouantitation	Method Detection	Bi	rds	Man	nmals	Fi	sh	Hu	mans	Inorganic Background	Ingestion, I	Dermal Contact, ar	nd Inhal	ation		Volatiliza Outdoo	ition to or Air	Vapor Intru Build	usion into lings
		Method	Limit	Limit	Individual	Population	Individual	Population	Freshwater	Marine	General ^(a)	Subsistence ^(b)	Freshwater	Occupational	Construction Wo	rker	Excavat Worke	tion er	Occupat	tional	Occupa	itional
Metals																						
Arsenic	7440-38-2	6020A	0.5	0.06	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	7	2	13		370			NV	-	NV
Cadmium	7440-43-9	60204	0.02	0.004	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	1	510	150		4 300			NV		NV
Chromium	7440-47-3	6020A	0.02	0.03	_	_	_	_	_	_		_	-	510	-		-			144		147
Copper	7440-50-8	6020A	0.08	0.1	-	-	-	-	-	-	-	-	-	41,000	12.000	,e	340,000			NV	-	NV
Lead	7439-92-1	6020A	0.05	0.009	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	17	800	800		800		-	NV		NV
Nickel	7440-02-0	6020A	0.2	0.03	-	-	-	-	_	_	-	-	-	20.000	6.100	1	170.000			NV		NV
Zinc	7440-66-6	6020A	0.5	0.2	-	-	-	-	-	-	-	-	-	-	-		-		-		- I -	
Mercury	7439-97-6	7471B	0.02	0.002	(c) (d)	(c) (d)	(c) (d)	(c) (d)	(c) (d)	(c) (d)	(c) (d)	(c) (d)	0.07	310	93		2.600		-	NV		NV
Hexavalent Chromium	18540-29-9	7196A	0.5	0.08	-	-	-	-	-	-	-	-	-	5.5	43		1200			NV		NV
Total Petroleum Hydrocarbons	10010 27 7	715011	0.0	0.00										0.0	10		1200					
Diesel Range Organics	68334-30-5	NWTPH-Dx	25	0.79	-	-	-	-	-	-	-	-	-	-	-		-			<u> </u>	-	
Gasoline Range Organics	8006-61-9	NWTPH-Gx	5	1.5	-	-	-	-	-	-	-	-	-	-	-		-		-		-	-
Volatile Organic Carbons (VOCs)					1		1	1	1	1										L		
1,1,1,2-Tetrachloroethane	630-20-6	8260C	0.005	0.00011	-	-	-	-	-	-	-	-	-	-	-		-				-	-
1,1,1-Trichloroethane (TCA)	71-55-6	8260C	0.005	0.00011	-	-	-	-	-	-	-	-	-	830,000 >Csat	430,000 >0	Csat	-	>Max	-	>Csat	-	>Csat
1,1,2,2-Tetrachloroethane	79-34-5	8260C	0.005	0.00013	-	-	-	-	-	-	-	-	-	-	-		-		-		- i	
1,1,2-Trichloroethane	79-00-5	8260C	0.005	0.00015	-	-	-	-	-	-	-	-	-	25	290		8,100	>Csat	24		2.7	
1,1-Dichloroethane	75-34-3	8260C	0.005	0.00012	-	-	-	-	-	-	-	-	-	200,000 >Csat	62,000 >0	Csat	-	>Max	-	>Max	-	>Max
1,1-Dichloroethene	75-35-4	8260C	0.005	0.00025	-	-	-	-	-	-	-	-	-	27,000 >Csat	12,000 >0	Csat 3	340,000	>Csat	-	>Csat	680	
1,1-Dichloropropene	563-58-6	8260C	0.005	0.00013	-	-	-	-	-	-	-	-	-	-	-		-		-			
1,2,3-Trichlorobenzene	87-61-6	8260C	0.02	0.00019	-	-	-	-	-	-	-	-	-	-	-		-					
1,2,3-Trichloropropane	96-18-4	8260C	0.005	0.00045	-	-	-	-	-	-	-	-	-	-	-		-					
1,2,4-1 richlorobenzene	120-82-1	8260C	0.02	0.00013	-	-	-	-	-	-	-	-	-	-	-	Cast	-	>Coat	- 1 000		-	
1,2,4-1 rimetnyibenzene	95-63-6	8260C	0.02	0.000054	-	-	-	-	-	-	-	-	-	2,000 >Csat	2,000 >0	sat	54,000	>Csat	1,000		1,000	
1 2-Dibromoethane (FDB)	106-93-4	8260C	0.02	0.0004	-	-	-		-	-	-	-	-	0.68	81		230		0.65		0 14	
1.2-Dichlorobenzene	95-50-1	8260C	0.02	0.000077		-	-	-	_	_		-	-	-	-		-		-			
1,2-Dichloroethane (EDC)	107-06-2	8260C	0.005	0.00007	-	-	-	-	-	-	-	-	-	15	180		5,000	>Csat	15		0.59	
1,2-Dichloropropane	78-87-5	8260C	0.005	0.00013	-	-	-	-	-	-	-	-	-	-	-		-		-			-
1,3,5-Trimethylbenzene	108-67-8	8260C	0.02	0.000092	-	-	-	-	-	-	-	-	-	10,000 >Csat	3,100 >0	Isat	86,000	>Csat	-	>Max	- i	>Max
1,3-Dichlorobenzene	541-73-1	8260C	0.005	0.000094	-	-	-	-	-	-	-	-	-	-	-		-		-		-	
1,3-Dichloropropane	142-28-9	8260C	0.005	0.00012	-	-	-	-	-	-	-	-	-	-	-		-		-		-	
1,4-Dichlorobenzene	106-46-7	8260C	0.005	0.000086	-	-	-	-	-	-	-	-	-	63	1,200 >0	Isat	34,000	>Csat	36		17	
2,2-Dichloropropane	594-20-7	8260C	0.005	0.000098	-	-	-	-	-	-	-	-	-	-	-		-				-	
2-Butanone (MEK)	78-93-3	8260C	0.02	0.0009	-	-	-	-	-	-	-	-	-	-	-		-					
2-Chlorotoluene	95-49-8	8260C	0.02	0.00012	-	-	-	-	-	-	-	-	-	-	-		-		-		-	
4 Chlorotoluono	106 43 4	8260C	0.02	0.00093	-	-	-	-	-	-	-	-	-	-	-		-				-	
4-Isopropyltoluene	99-87-6	8260C	0.02	0.000064	-	-	-	-	-	_	-	-	-	-	-		-					
4-Methyl-2-pentanone (MIBK)	108-10-1	8260C	0.02	0.0018	-	-	-	-	-	-	-	-	-	-	-		-		-			
Acetone	67-64-1	8260C	0.02	0.0029	-	-	-	-	-	-	-	-	-	-	-		-		-		-	-
Benzene	71-43-2	8260C	0.005	0.000054	-	-	-	-	-	-	-	-	-	34	340		9,500	>Csat	50		1.2	
Bromobenzene	108-86-1	8260C	0.005	0.000088	-	-	-	-	-	-	-	-	-	-	-		-		-		-	
Bromochloromethane	74-97-5	8260C	0.005	0.00024	-	-	-	-	-	-	-	-	-	-	-		-		-			
Bromodichloromethane	75-27-4	8260C	0.005	0.00016	-	-	-	-	-	-	-	-	-	15	210		5,800	>Csat	11		1.9	
Bromoform	75-25-2	8260C	0.005	0.00014	-	-	-	-	-	-	-	-	-	240	2,400 >0	Isat	66,000	>Csat	550		550	
Bromomethane	74-83-9	8260C	0.005	0.0002	-	-	-	-	-	-	-	-	-	710	330		9,200	>Csat	700		17	
Carbon Disulfide	75-15-0	8260C	0.005	0.000092	-	-	-	-	-	-	-	-	-	-	-		-	20.1	-		-	
Chlorohonzono	56-23-5	8260C	0.005	0.000094	-	-	-	-	-	-	-	-	-	31 8 300 \Cast	280	Cat 1	1,900	>Csat	65	>Coot	1.6	>Coot
Chloroethane	75_00.3	8260C	0.005	0.000065	-	-	-	-	-	-	-	-	-	o,ouu >Csat	4,300 >0	Jav	-	>Max		>Max	-	>Ceat
Chloroform	67-66-3	8260C	0.005	0.00011	-	-	-	-	-	-	-	-	-	25	380	····	11.000	>Csat	17	- 1910A	0.41	Coat
Chloromethane	74-87-3	8260C	0.005	0.00018	-	-	-	-	-	-	-	-	-	25,000 >Csat	25,000 >0	Csat 7	700,000	>Csat	-	>Csat	300	
cis-1,2-Dichloroethene	156-59-2	8260C	0.005	0.00012	-	-	-	-	-	-	-	-	-	2,000 >Csat	620		17,000	>Csat	-	>Max	-	>Max
cis-1,3-Dichloropropene	10061-01-5	8260C	0.005	0.00013	-	-	-	-	-	-	-	-	-	-	-		-		-		-	
Dibromochloromethane	124-48-1	8260C	0.005	0.00018	-	-	-	-	-	-	-	-	-	-	-		-		-		-	

Table 4B

Proposed Analytes, Preliminary Screening Levels, and Laboratory Limits - Solids Phase II Environmental Site Assessment Blue Heron Mill Site and Main Office Building

					Intake Basin Sediment									Soil, Storm Water Solids, and Tailrace Solids						
		USEPA	Sample	Method									Inorganic				Volatilization to	Vapor Intrusion into		
Constituent	CAS Number	Analytical	Quantitation	Detection	Bi	rds	Man	nmals	Fis	sh	Hu	mans	Background	Ingestion,	Dermal Contact, and I	nhalation	Outdoor Air	Buildings		
Constituent	chio rumber	Method	Limit	Limit				1	T T							Excavation				
					Individual	Population	Individual	Population	Freshwater	Marine	General ^(a)	Subsistence ^(b)	Freshwater	Occupational	Construction Worke	r Worker	Occupational	Occupational		
Dibromomethane	74.05.2	8260C	0.005	0.00028												·····				
Dichlorodifluoromethane	74-95-5	8260C	0.005	0.00028	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Ethylbenzene	100-41-4	8260C	0.005	0.000094	-	-	-	-	-	-	-	-	-	140	1.600 >Csat	44.000 >Csat	160	12		
Hexachlorobutadiene	87-68-3	8260C	0.02	0.0004	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Isopropylbenzene	98-82-8	8260C	0.02	0.000081	-	-	-	-	-	-	-	-	-	53,000 >Csat	24,000 >Csat	t 670,000 >Csat	- >Csat	- >Csat		
m,p-Xylenes	179601-23-1	8260C	0.005	0.0001	-	-	-	-	-	-	-	-	-	25,000 >Csat	19,000 >Csat	540,000 >Csat	- >Csat	- >Csat		
Methylene Chloride	75-09-2	8260C	0.01	0.00016	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Naphthalene	91-20-3	8260C	0.02	0.00013	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
n-Butylbenzene	104-51-8	8260C	0.02	0.000069	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
n-Propylbenzene	103-65-1	8260C	0.02	0.00013	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
o-Xylene	95-47-6	8260C	0.005	0.000081	-	-	-	-	-	-	-	-	-	25,000 >Csat	19,000 >Csat	t 540,000 >Csat	- >Csat	- >Csat		
sec-Butylbenzene	135-98-8	8260C	0.02	0.000074	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Styrene	100-42-5	8260C	0.005	0.00014	-	-	-	-	-	-	-	-	-	120,000 >Csat	51,000 >Csat	- >Max	- >Csat	- >Csat		
tert-Butylbenzene	98-06-6	8260C	0.02	0.00014	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Tetrachloroethene (PCE)	127-18-4	8260C	0.005	0.00016	-	-	-	-	-	-	-	-	-	940 >Csat	9,100 >Csa	t 250,000 >Csat	- >Csat	36		
Toluene	108-88-3	8260C	0.005	0.00015	-	-	-	-	-	-	-	-	-	77,000 >Csat	24,000 >Csat	t 680,000 >Csat	- >Csat	- >Csat		
trans-1,2-Dichloroethene	156-60-5	8260C	0.005	0.00012	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
trans-1,3-Dichloropropene	10061-02-6	8260C	0.005	0.00011	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Trichloroethene (TCE)	79-01-6	8260C	0.005	0.00015	-	-	-	-	-	-	-	-	-	46	420	12,000 >Csat	96	2.7		
Irichlorofluoromethane	75-69-4	8260C	0.005	0.000085	-	-	-	-	-	-	-	-	-	120,000 >Csat	63,000 >Csa	- >Max	- >Csat	- >Csat		
Vinyl Chloride	/5-01-4	8260C	0.005	0.00018	-	-	-	-	-	-	-	-	-	3.9	30	830	89	2.2		
Semivolatile organic carbons (SVOCs)	100.00.1		0.00	0.011		1	1		,					1				1		
1,2,4-Trichlorobenzene	120-82-1	8270D	0.33	0.011	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
1,2-Dichlorobenzene	95-50-1	8270D	0.33	0.018	-	-	-	-	-	-	-	-	-	35,000 >Csat	19,000 >Csa	520,000 >Csat	- >Csat	- >Csat		
1,2-Diphenyinyurazine	122-66-7 E41 72 1	8270D	0.33	0.014	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
1,3-Dichlorobenzene	106 46 7	8270D	0.33	0.018	-	-	-	-	-	-	-	-	-	- 62	- 1 200 \Cast		-	- 17		
2 3 4 6-Tetrachlorophenol	58-90-2	8270D	0.33	0.018	-	-	-	-	-	-	-	-	-	03	1,200 ×Csa			1/		
2.4.5-Trichlorophenol	95-95-4	8270D	0.33	0.040														_		
2.4.6-Trichlorophenol	88-06-2	8270D	0.33	0.010	-	-	-	-	-	-	-	-	-	200	1.500	42.000 >Csat	- NV	- NV		
2.4-Dichlorophenol	120-83-2	8270D	0.33	0.016	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
2,4-Dimethylphenol	105-67-9	8270D	0.33	0.015	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
2,4-Dinitrophenol	51-28-5	8270D	2	0.11	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
2,4-Dinitrotoluene	121-14-2	8270D	0.33	0.015	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
2,6-Dinitrotoluene	606-20-2	8270D	0.33	0.016	-	-	-	-	-	-	-	-	-	770 >Csat	240	6,600 >Csat	- NV	- NV		
2-Chloronaphthalene	91-58-7	8270D	0.33	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
2-Chlorophenol	95-57-8	8270D	0.33	0.0099	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
2-Methyl-4,6-dinitrophenol	534-52-1	8270D	2	0.14	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
2-Methylnaphthalene	91-57-6	8270D	0.33	0.011	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
2-Methylphenol	95-48-7	8270D	0.33	0.017	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
2-Nitroaniline	88-74-4	8270D	0.33	0.017	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
2-Nitrophenoi	00-75-5	8270D	0.33	0.014	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
3 Nitroapilino	91-94-1	8270D	0.33	0.027	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
4-Bromonbenyl Phenyl Ether	101-55-3	8270D	0.33	0.012	-	-	-	-	-		-	-	-	-	-	-	-	-		
4-Chloro-3-methylphenol	59-50-7	8270D	0.33	0.012	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
4-Chloroaniline	106-47-8	8270D	0.33	0.014	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
4-Chlorophenyl Phenyl Ether	7005-72-3	8270D	0.33	0.016	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
4-Methylphenol	106-44-5	8270D	0.33	0.017	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
4-Nitroaniline	100-01-6	8270D	2	0.18	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
4-Nitrophenol	100-02-7	8270D	2	0.15	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Acenaphthene	83-32-9	8270D	0.33	0.013	-	-	-	-	-	-	-	-	-	61,000 >Csat	19,000 >Csat	520,000 >Csat	- >Max	- >Max		
Acenaphthylene	208-96-8	8270D	0.33	0.016	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Acetophenone	98-86-2	8270D	0.33	0.023	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Aniline	62-53-3	8270D	1	0.022	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Anthracene	120-12-7	8270D	0.33	0.014	-	-	-	-	-	-	-	-	-	310,000 >Csat	93,000 >Csat	t - >Max	- >Max	- >Max		
Atrazine Rong(a) thus	1912-24-9	8270D	0.33	0.017	-	-	-	-	-	-	-	-	-	-	-	-	-	- x tx 7		
Bonzo(a)anthracene	56-55-3	8270D	0.33	0.012	-	-	-	-	-	-	-	-	-	2./	21 >Csa	50 >Csat	- NV	- NV		
Bonzo(b)fluoronthono	205.00.2	02/UD 8270D	0.33	0.02	-	-	-	-	-	-	-	-	-	2.7	2.1	59 ×Csat	- INV	- INV		
Benzo(g h i)pervlene	191-24-2	8270D	0.33	0.017	-	-	-	-	-	-	-	-	-	<i>2.1</i>			Csat	Csat		
Benzo(k)fluoranthene	207-08-9	8270D	0.33	0.02	-	-	-	-		-	-	-	-	- 27 >Ceat	210 >Ceat	- 5.900 >Csat	- NV	- NV		
Benzaldehyde	100-52-7	8270D	0.33	0.021	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-		
					Intake Basin Sediment Soil, Storm Water Solids, and Tailrace Solids					ilrace Solids										
------------------------------	------------	---------------------	------------------------	---------------------	---	------------	------------	------------	------------	---------------	------------------------	----------------------------	-------------------------	-------------------	------------------------	----------------------	----------------------------------	-----------------------------------		
Constituent	CAS Number	USEPA Analytical	Sample Quantitation	Method Detection	Bi	rds	Man	ımals	Fis	h	Hu	mans	Inorganic Background	Ingestion, 1	Dermal Contact, and In	halation	Volatilization to Outdoor Air	Vapor Intrusion into Buildings		
		Method	Limit	Limit	Individual	Population	Individual	Population	Freshwater	Marine	General ^(a)	Subsistence ^(b)	Freshwater	Occupational	Construction Worker	Excavation Worker	Occupational	Occupational		
Benzoic Acid	65-85-0	8270D	2	0.14	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Benzyl Alcohol	100-51-6	8270D	0.33	0.017	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Biphenyl	92-52-4	8270D	0.33	0.009	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Bis(2-chloroethoxy)methane	111-91-1	8270D	0.33	0.011	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Bis(2-chloroisopropul) Ether	30638 32 0	8270D	0.33	0.012	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Bis(2-ethylbexyl) Phthalate	117-81-7	8270D	0.33	0.014	-	-	-	-	-		-	-	-	- 150 >Csat	- 1 200 >Csat		- NV	- NV		
Butyl Benzyl Phthalate	85-68-7	8270D	0.33	0.015	-	-	-	-	-	-	-	-	-	-	-	-	- 197	-		
Caprolactam	105-60-2	8270D	0.33	0.15	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Carbazole	86-74-8	8270D	0.33	0.011	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Chrysene	218-01-9	8270D	0.33	0.012	-	-	-	-	-	-	-	-	-	250 >Csat	2,100 >Csat	57,000 >Csat	- >Csat	- >Csat		
Dibenz(a,h)anthracene	53-70-3	8270D	0.33	0.027	-	-	-	-	-	-	-	-	-	0.27	2.1	59 >Csat	- NV	- NV		
Dibenzofuran	132-64-9	8270D	0.33	0.012	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Diethyl Phthalate	84-66-2	8270D	0.33	0.014	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Dimethyl Phthalate	131-11-3	8270D	0.33	0.016	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Di-n-butyl Phthalate	84-/4-2	8270D	0.33	0.012	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Eluoranthono	206.44.0	8270D	0.33	0.024	-	-	- 360	- 1800	- 37	37	- 510	- 62	-	- 29.000 >Ceat	- 8,900 >Ceat	- 250.000 >Ceat	- >May	- >Max		
Fluorene	86-73-7	8270D	0.33	0.011	-	-		1,800			510		-	29,000 >Csat	12 000 >Csat	230,000 >Csat	- >Nax	- >Max		
Hexachlorobenzene	118-74-1	8270D	0.33	0.015	-	-	-	-	61	61	0.019	0.0023	-	1.2	12,000 - Cour	330	79	79		
Hexachlorobutadiene	87-68-3	8270D	0.33	0.014	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Hexachlorocyclopentadiene	77-47-4	8270D	0.33	0.012	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Hexachloroethane	67-72-1	8270D	0.33	0.022	-	-	-	-	-	-	-	-	-	90	970 >Csat	27,000 >Csat	- >Csat	- >Csat		
Indeno(1,2,3-cd)pyrene	193-39-5	8270D	0.33	0.039	-	-	-	-	-	-	-	-	-	2.7 >Csat	21 >Csat	590 >Csat	- NV	- NV		
Isophorone	78-59-1	8270D	0.33	0.014	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Naphthalene	91-20-3	8270D	0.33	0.014	-	-	-	-	-	-	-	-	-	23	580 >Csat	16,000 >Csat	99	99		
Nitrobenzene	98-95-3	8270D	0.33	0.026	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
N-Nitrosodimethylamine	62-75-9	8270D	2	0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
N-Nitrosodi-n-propylamine	621-64-7	8270D 8270D	0.33	0.019	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Pentachlorophenol	87-86-5	8270D	0.33	0.018	-	-	0.33	33	0.31	0.17	0.25	- 0.030	-	3.9	- 31	- 860	- NW	- NIV		
Phenanthrene	85-01-8	8270D	0.33	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	- 100		
Phenol	108-95-2	8270D	0.33	0.019	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Pyrene	129-00-0	8270D	0.33	0.014	-	-	18,000	90,000	1.9	1.9	380	47	-	21,000 >Csat	6,700 >Csat	190,000 >Csat	- >Max	- >Max		
Pyridine	110-86-1	8270D	0.33	0.33	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
PCBs																				
PCBs (total as Aroclors)					0.057	0.17	0.044	0.084	0.022	0.047	0.00039	4.80E-05	-	0.70	7.5 >Csat	210 >Csat	- >Csat	- >Csat		
Aroclor 1016	12674-11-2	8082A	0.1	0.0061	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Aroclor 1221	11104-28-2	8082A	0.2	0.0061	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Aroclor 1232	11141-16-5	8082A	0.1	0.0061	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Aroclor 1242	53469-21-9	8082A	0.1	0.0061	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Aroclor 1248	12672-29-6	8082A	0.1	0.0061	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Aroclor 1254	11097-69-1	8082A	0.1	0.0061	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Aroclor 1260	3732/ 23 5	0082A 8082 A	0.1	0.0061	-	-	-	-		-	-	-	-	-	-	-	-	-		
Aroclor 1262	11100-14-4	8082A	0.1	0.0001	-	-	-	-	-		-	-	-	-	-	-		-		
Dioxins and Furans	11100 11 1	000211	0.1	0.0001																
2378-TCDD	1746-01-6	8290	1.00E-06	5.88F-08	7 00F-07	3 50E-06	5 20E-08	1 40E-06	5.60E-07	5 60E-07	910E-09	1 10F-09		1 50E-05	1 50E-04	4 20E-03	- >Csat	- >Csat		
12378-PeCDD	40321-76-4	8290	2.50E-06	4.82E-08	2 10E-05	1 10E-04	1.50E-06	4 20E-05	1 70E-05	1 70E-05	2 70E-07	3 40E-08	-	-	-	-	-	-		
123478-HxCDD	39227-28-6	8290	2.50E-06	4 66E-08	4 20E-04	2 10E-03	1.50E-05	4 20E-04	3 40E-05	3 40E-05	2.70E-06	3.40E-07	-	_	-	-	-	-		
123678-HxCDD	57653-85-7	8290	2.50E-06	4.25E-08	2.10E-03	1.10E-02	1.50E-05	4.20E-04	1.70E-03	1.70E-03	2.70E-06	3.40E-07	-	-	-	-	-	-		
123789-HxCDD	19408-74-3	8290	2.50E-06	4.47E-08	2.10E-04	1.10E-03	1.50E-05	4.20E-04	1.70E-03	1.70E-03	2.70E-06	3.40E-07	-	_	-	-	-	-		
1234678-HpCDD	35822-46-9	8290	2.50E-06	4.79E-08	5.30E-01	2.70E+00	3.90E-03	1.10E-01	4.30E-01	4.30E-01	6.90E-04	8.50E-05	-	-	-	-	-	-		
OCDD	3268-87-9	8290	5.00E-06	6.95E-08	5.30E+00	2.70E+01	1.30E-01	3.60E+00	4.30E+00	4.30E+00	2.30E-02	2.80E-03	-	-	-	-	-	-		
2378-TCDF	51207-31-9	8290	1.00E-06	5.62E-08	5.90E-06	3.00E-05	4.30E-06	1.20E-04	9.50E-05	9.50E-05	7.70E-07	9.40E-08	-	-	-	-	-	-		
12378-PeCDF	57117-41-6	8290	2.50E-06	3.96E-08	5.90E-05	3.00E-04	1.40E-05	4.00E-04	9.50E-05	9.50E-05	2.60E-06	3.10E-07	-	-	-	-	-	-		
23478-PeCDF	57117-31-4	8290	2.50E-06	3.88E-08	7.00E-07	3.50E-06	1.70E-07	4.70E-06	1.10E-06	1.10E-06	3.00E-08	3.70E-09	-	-	-	-	-	-		
123478-HxCDF	70648-26-9	8290	2.50E-06	3.40E-08	2.10E-04	1.10E-03	1.50E-05	4.20E-04	1.70E-04	1.70E-04	2.70E-06	3.40E-07	-	-	-	-	-	-		
123678-HxCDF	57117-44-9	8290	2.50E-06	3.35E-08	2.10E-04	1.10E-03	1.50E-05	4.20E-04	1.70E-04	1.70E-04	2.70E-06	3.40E-07	-	-	-	-	-	-		
123789-HxCDF	72918-21-9	8290	2.50E-06	4.18E-08	2.10E-04	1.10E-03	1.50E-05	4.20E-04	1.70E-04	1.70E-04	2.70E-06	3.40E-07	-	-	-	-	-	-		
234678-HxCDF	60851-34-5	8290	2.50E-06	3.67E-08	2.10E-04	1.10E-03	1.50E-05	4.20E-04	1.70E-04	1.70E-04	2.70E-06	3.40E-07	-	-	-	-	-	-		
1234678-HpCDF	67562-39-4	8290	2.50E-06	3.77E-08	5.30E-02	2.70E-01	3.90E-03	1.10E-01	4.30E-02	4.30E-02	6.90E-04	8.50E-05	-	-	-	-	-	-		

								In	take Basin Sediı	nent					Soil, Storm Wat	er Solids, and Ta	ilrace Solids	
Constituent	CAS Number	USEPA Analytical	Sample Quantitation	Method Detection	Bi	rds	Man	nmals	Fis	sh	Hu	mans	Inorganic Background	Ingestion	, Dermal Contact, and Inha	lation	Volatilization to Outdoor Air	Vapor Intrusion into Buildings
		Method	Limit	Limit	Individual	Population	Individual	Population	Freshwater	Marine	General ^(a)	Subsistence ^(b)	Freshwater	Occupational	Construction Worker	Excavation Worker	Occupational	Occupational
1234789-HpCDF	55673-89-7	8290	2.50E-06	5.00E-08	5.30E-02	2.70E-01	3.90E-03	1.10E-01	4.30E-02	4.30E-02	6.90E-04	8.50E-05	-	-	-	-	-	-
OCDF	39001-02-0	8290	5.00E-06	6.44E-08	5.30E+00	2.70E+01	1.30E-01	3.60E+00	4.30E+00	4.30E+00	2.30E-02	2.80E-03	-	-	-	-	-	-
Total TCDD	41903-57-5	8290	1.00E-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total PeCDD	36088-22-9	8290	2.50E-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total HxCDD	34465-46-8	8290	2.50E-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total HpCDD	37871-00-4	8290	2.50E-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total TCDF	30402-14-3	8290	1.00E-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total PeCDF	30402-15-4	8290	2.50E-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total HxCDF	55684-94-1	8290	2.50E-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total HpCDF	38998-75-3	8290	2.50E-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
General Chemisty																		
Asbestos		600	-	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes: - = Not applicable or not available

Concentrations are listed in milligrams per kilogram (mg/kg)

Shaded cells indicate that the screening level is less than the Sample Quantitation Limit.

ODEQ = Oregon Department of Environmental Quality

RBDM = Risk Based Decision Making

Sediment Bioaccumulation Levels are collected from ODEQ Guidance for Assessing Bioaccumulative Chemical of Concern in Sediment, Updated April 3, 2007

Risk Based Decision Making Action Levels are screened among three pathways for Occupational and Construction Worker receptors - Soil Ingestion/Dermal Contact/Ingestion, Volatilization to Outdoor Air, Vapor Intrusion to Buildings (a) Based on general/recreational fish ingestion rate of 0.0175 kg/day.

(b) Based on subsistence/ tribal fish ingestion rate of 0.1424 kg/day.

(c) Screen using either site specific or default regional background concentrations (shown in the column on the right in this table).

(d) Sites with mercury contamination should collect actual fish tissue data at the site. Site-specific conditions regulate the methylization process from sediment or water into aquatic receptors.

>Csat = The RBC exceeds the limit of three-phase equilibirum partioning

>Max = The RBC is greater than 100,000 mg/kg

Appendix B Reference Documents

Appendix B - Reference Documents

2011 Phase 2 - Aerated Stabilization Basin Site -West Linn BlueHeronPaperPhaseIISiteAssessmentFinalReport.pdf" Asbestos Analysis - 2000 BLUE HERON - Asbestos Survey Feb-2000.pdf Asset Info & Photos Real Property IRI Mill Layout Drawing (_20080331_0001).pdf Asset Info & Photos_Real Property Lagoon Property Photo, Maps & Misc Info.pdf Asset Info & Photos_Real Property Aerial Photo of Both Properties from Title Co.pdf" Flyover Aerial Photo of Mill.jpg" Asset Info & Photos Real Property Asset Info & Photos Real Property High Definition Overhead Photo of Mill - Metro - Summer 2005.pdf" Asset Info & Photos_Real Property Historical Designation Report from 2002 - Part 2 (Photos).pdf" Asset Info & Photos Real Property Historical Designation Report from 2002.pdf" Draft Report re PCB Investigation - May 2011 Table - Results.pdf" Draft Report re PCB Investigation - May 2011 Figure - Sampling Locations.pdf" Draft Report re PCB Investigation - May 2011 Ld-BHPC Preliminary Soil Investigation.pdf" E&E Inc. Final Site Inspection - 12-11-08.pdf" EPA No Further Action Letter - Oct 2009.pdf 2011 Due Diligence Reports AKS Report 113011 Blue Heron Final Report.pdf" 2011 Due Diligence Reports BLUE HERON - Water Rights Determination Diagram - Legal.pdf" 2011 Due Diligence Reports HSW Email to Tony Konkol.Union Pacfic Maps Brock Nelson.pdf" 2011 Due Diligence Reports 113 FERC 62,186.pdf" Superfund Technical Assessment and Response Team Region 10 Blue Heron Preliminary Assessment Report.pdf" 2011 Due Diligence Reports 2011 Due Diligence Reports Table - Results - Bridgewater Group Report.pdf" 2011 Due Diligence Reports US EPA No Further Action Letter.10.09.pdf" 2011 Due Diligence Reports WF-DEO-401-complete.pdf 2011 Due Diligence Reports AEI Environmental Site Assessment Phase I ESA (Mill Phase I).pdf" 2011 Due Diligence Reports AEI Property Photographs.pdf" 2011 Due Diligence Reports Asbestos Survey Blue Heron 02.2000.pdf" 2011 Due Diligence Reports Bridgewater Group Results of Preliminary Soil Investigation.pdf" Ecology and Environment Final Blue Heron Site Inspection Report.pdf" 2011 Due Diligence Reports 2011 Due Diligence Reports Ecology and Environment Final Blue Heron Site Inspection.pdf 2011 Due Diligence Reports ERM Environmental Document Review.pdf" 2011 Due Diligence Reports Figure - Sampling Locations - Bridgewater Group Report.pdf" 2011 Due Diligence Reports OR DEQ National Polluntant Discharge Elimiation System Waste DischargeBlue Heron Permit Final.pdf 2011 Due Diligence Reports OR DHS Letter - Amendment 32 Changes to Radioactive Materials License.pdf" Paul Vandenberg BHPC Environmental Dcoument Review Memo.pdf" 2011 Due Diligence Reports 2011 Due Diligence Reports Portland Harbor Natural Resource Trustee Council Preassessment Screen POrtland Harbor Superfund Site.pdf" 2011 Due Diligence Reports Site Maps and Aerial Photographs.pdf' Vesting-2000029964.pdf" 2011 Due Diligence Reports Title Reports and Exceptions 2011 Due Diligence Reports Title Reports and Exceptions Exception #6.pdf" 2011 Due Diligence Reports Title Reports and Exceptions Exception #7.pdf" 2011 Due Diligence Reports Title Reports and Exceptions Exception #8.pdf" 2011 Due Diligence Reports Title Reports and Exceptions Exception #9.pdf" 2011 Due Diligence Reports Title Reports and Exceptions Exception #10.pdf" 2011 Due Diligence Reports Title Reports and Exceptions Exception #17.pdf" 2011 Due Diligence Reports Exception #18.pdf" Title Reports and Exceptions 2011 Due Diligence Reports Title Reports and Exceptions Exception #19.pdf" 2011 Due Diligence Reports Title Reports and Exceptions Exception #20.pdf" 2011 Due Diligence Reports Title Reports and Exceptions Exception #21.pdf" 2011 Due Diligence Reports Title Reports and Exceptions Exception #22.pdf" 2011 Due Diligence Reports Title Reports and Exceptions Exception #23.pdf" 2011 Due Diligence Reports Title Reports and Exceptions Exception #24.pdf" 2011 Due Diligence Reports Title Reports and Exceptions Exception #25.pdf" 2011 Due Diligence Reports Title Reports and Exceptions Exception #26.pdf" 2011 Due Diligence Reports Title Reports and Exceptions Exception #27.pdf" 2011 Due Diligence Reports Title Reports and Exceptions Exception #28.pdf" 2011 Due Diligence Reports Exception #29.pdf" Title Reports and Exceptions 2011 Due Diligence Reports Title Reports and Exceptions Exception #30.pdf" 2011 Due Diligence Reports Title Reports and Exceptions Exception #31.pdf" 2011 Due Diligence Reports Title Reports and Exceptions Exception #32.pdf" Exception #33 and #34.pdf" 2011 Due Diligence Reports Title Reports and Exceptions 2011 Due Diligence Reports Title Reports and Exceptions Exception #35.pdf" 2011 Due Diligence Reports Title Reports and Exceptions Exception #36.pdf" 2011 Due Diligence Reports Title Reports and Exceptions Exception #37.pdf" 2011 Due Diligence Reports Title Reports and Exceptions Exception #38.pdf" Exception #39.pdf" 2011 Due Diligence Reports Title Reports and Exceptions Exception #40.pdf" 2011 Due Diligence Reports Title Reports and Exceptions 2011 Due Diligence Reports Title Reports and Exceptions Exception #41.pdf" 2011 Due Diligence Reports Title Reports and Exceptions Exception #42.pdf" 2011 Due Diligence Reports Title Reports and Exceptions Exception #43.pdf" Exception #45.pdf" 2011 Due Diligence Reports Title Reports and Exceptions 2011 Due Diligence Reports Exception #46.pdf" Title Reports and Exceptions

2011 Due Diligence Reports Title Reports and Exceptions 2011 Due Diligence Reports Title Reports and Exceptions 2011 Due Diligence Reports Title Reports and Exceptions 2011 Due Diligence Reports Title Reports and Exceptions 2011 Due Diligence Reports Title Reports and Exceptions 2011 Due Diligence Reports Title Reports and Exceptions 2011 Due Diligence Reports Title Reports and Exceptions 2011 Due Diligence Reports Title Reports and Exceptions 2011 Due Diligence Reports Title Reports and Exceptions 2011 Due Diligence Reports Title Reports and Exceptions Building Assessment Matrix V2-0 WF Historic Asset Site Diagram.pdf" Building Assessment Matrix Template - WF Historical Asset Assessment.xlsx" Building Assessment Matrix V 2-1 - WF Historical Asset Assessment.pdf" Building Assessment Matrix V 2-1 - WF Historical Asset Assessment.xlsx" Building Snap Shot Forms South Substation docx" Building Snap Shot Forms Sulphite Plant.docx" Building Snap Shot Forms Water Filter Plant.docx" Building Snap Shot Forms Wollen Mill Foudations.docx" Building Snap Shot Forms AutoShop.docx" Building Snap Shot Forms Blue Heron Paper Office Building.docx" Butler Building.docx" Building Snap Shot Forms Building Snap Shot Forms Carpentry Shop.docx" Building Snap Shot Forms Clarifier.docx" Building Snap Shot Forms Deink Mill B.docx" Building Snap Shot Forms Deink ONP Repulper.docx" Building Snap Shot Forms Digesters.docx Building Snap Shot Forms Fire Station, Office, Guard Shack.docx" Building Snap Shot Forms Mill D.docx" Building Snap Shot Forms Mill E.docx" Building Snap Shot Forms Mill G.docx" Building Snap Shot Forms Mill O.docx" Millwright Shop.docx" Building Snap Shot Forms Building Snap Shot Forms No 4 Paper Machine Warehouse.docx" Building Snap Shot Forms No 4 Paper Machine.docx" No 2 Paper Machine.docx" Building Snap Shot Forms Building Snap Shot Forms No.3 Paper Machine.docx" Building Snap Shot Forms North Substation.docx" Building Snap Shot Forms Pipe Chase.docx" Building Snap Shot Forms Pipe Shop.docx" smurfit scan of mill timeline.pdf" Scans from Blue Heron Collection Scans from Blue Heron Collection Smurfit write up on history of plant.pdf" Scans from Blue Heron Collection tough rules saving a dying oregon river NYT 1970.pdf" 1930s history timeline page II.pdf" Scans from Blue Heron Collection Scans from Blue Heron Collection 1930s timeline of firsts.pdf" Scans from Blue Heron Collection 1950s speech on history of site.pdf" Scans from Blue Heron Collection 1953 speech.pdf" Scans from Blue Heron Collection 1967 Publishers timeline of Mill.pdf" Scans from Blue Heron Collection a visit through publishers paper.pdf" Scans from Blue Heron Collection Blue Heron 3.pdf" Scans from Blue Heron Collection blue Heron2.pdf" Hawley Sells to Publishers 1948.pdf" Scans from Blue Heron Collection Scans from Blue Heron Collection Pacific PaperMill News 1947.pdf" Scans from Blue Heron Collection pulp mills asked to reduce waste 1965.pdf" Scans from Blue Heron Collection SKMBT_C552D12020115090.pdf" Scans from Blue Heron Collection SKMBT_C552D12020115101.pdf" Scans from Blue Heron Collection SKMBT C552D12020115102.pdf" SKMBT_C552D12020115103.pdf" Scans from Blue Heron Collection Scans from Blue Heron Collection SKMBT_C552D12020115120.pdf" Exhibit A- Oregonian Archive for Publishers Paper.pdf" historic contributing map.pdf" NR_Noms_83002173- White House.pdf" Publishers Paper History.pdf" rpt_SiteForm_short_grp.pdf" 1930s history timeline.pdf" 2002 willamette_falls_request_of_eligibility_-photos.pdf" 2002 willamette_falls_request_of_eligibility_-_report.pdf" BH Property Report 2.22.12.pdf" Blue Heron Historic Contributing strucutre survey.pdf" Blue Heron Sanborn Maps 1884-1950.pdf" Blue Heron1.pdf" 699-0000-GM-D-6234 BHP MILL MAP.pdf" Cad Master Facility Plan Maps 699-0000-GM-D-06234 SNC OC MILL MAP.pdf" Cad Master Facility Plan Maps 699-0000-GM-D-6234 BHP MILL MAP LINE.pdf" Cad Master Facility Plan Maps Cad Master Facility Plan Maps 699-0000-GM-D-6234 BHP MILL MAP REV 4.pdf" GIS MAPS Summer 2011 Blue Heron Mill - Utilities Map - 24x36L - 20110325.pdf" GIS MAPS Summer 2011 Blue Heron Mill - Zoning Map - 11x17L - 20110331.pdf"

Exception #47.pdf"

Exception #48.pdf"

Map 1.pdf"

Map 2.pdf"

Map 3.pdf"

Map 4.pdf"

Map 5.pdf"

Map 6.pdf"

Map 7.pdf"

Preliminary Title Report.07.27.11.pdf"

GIS MAPS Summer 2011 Blue Heron Mill - Zoning Map - 24x36L - 20110325.pdf" GIS MAPS Summer 2011 Blue Heron Mill - Aerial Photo Map - 11x17L - 20110331.pdf" GIS MAPS Summer 2011 Blue Heron Mill - Aerial Photo Map - 24x36L - 20110325.pdf" GIS MAPS Summer 2011 Blue Heron Mill - Contour Map - 11x17L - 20110331.pdf" GIS MAPS Summer 2011 Blue Heron Mill - Contour Map - 24x36L - 20110325.pdf" GIS MAPS Summer 2011 Blue Heron Mill - Natural Resources Map - 11x17L - 20110331.pdf" GIS MAPS Summer 2011 Blue Heron Mill - Natural Resources Map - 24x36L - 20110325.pdf" GIS MAPS Summer 2011 Blue Heron Mill - Taxlots and Ownership Map - 11x17 - 20110331.pdf" GIS MAPS Summer 2011 Blue Heron Mill - Utilities Map - 11x17L - 20110331.pdf" Oregon City - GIS Blue Heron Storm Features.pdf" Oregon City - GIS Blue Heron Water lines.pdf Oregon City - GIS Blue Heron Sewer Features.pdf" Blue Heron Mill - Tax Map 2-2E-31BD - 24x36L - 20110325.pdf" Tax and Plat Maps Tax and Plat Maps Blue Heron Mill - Taxlots and Ownership Map - 24x36L - 20110325.pdf" Tax and Plat Maps 0002 Oregon City - Edited.jpg" Tax and Plat Maps 0002 Oregon City_closeup.tif" Tax and Plat Maps 2s2e31.jpg" 2s2e31bd.jpg" Tax and Plat Maps Tax and Plat Maps Blue Heron Mill - Plat Map - 24x36L - 20110325.pdf" Tax and Plat Maps Blue Heron Mill - Tax Map 2-2E-31 - 24x36L - 20110325.pdf" 1996 Floodline b.jpg" USGS Quad Map.pdf" 415_Main_Street_Master Facility Map.pdf" 1938 Map of Blue Heron and west linn plant.pdf" 1996 Floodline a.jpg" Key Bankruptcy Docs & Orders 710 - Notice of Bankruptcy Case, Meeting of Creditors, and Deadlines, and Trustee Appointment.pdf" Key Bankruptcy Docs & Orders 755 - Supplemental conversion documents.pdf" Key Bankruptcy Docs & Orders 784 - Order Extending Time to Assume or Reject Unexpired Leases and Executory Contracts.pdf" Key Bankruptcy Docs & Orders 677 - Order re Conversion.pdf" Key Bankruptcy Docs & Orders 705 - Conversion Documents.pdf" Key Bankruptcy Docs & Orders Disclosure Statement (latest version) 476-1 - Second Amended Disclosure Statement - Exhibits.pdf" Key Bankruptcy Docs & Orders Disclosure Statement (latest version) 476 - Second Amended Disclosure Statement.pdf" BLUE HERON - 001 - Voluntary Petition.pdf Key Bankruptcy Docs & Orders Petition & Schedules BLUE HERON - 003 - List of 20 Largest Creditors.pdf" Key Bankruptcy Docs & Orders Petition & Schedules Key Bankruptcy Docs & Orders Petition & Schedules BLUE HERON - 004 - List of Equity Security Holders.pdf" Key Bankruptcy Docs & Orders Petition & Schedules BLUE HERON - 005 - Corporate Ownership Statement.pdf" Key Bankruptcy Docs & Orders Petition & Schedules BLUE HERON - 060 - Missing documents - Schedules.pdf" Key Bankruptcy Docs & Orders 740 - Order re Sale of Inventory & Supplies.pdf" Key Bankruptcy Docs & Orders 782 - Order re Sale of Machinery, Fixtures, Equipment, Vehicles, and Furnishings.pdf" 0803161.pdf" Lagoon Phase I & II - April 2008 Appendix A_Phase II ESA Attachment A_Lab Analytical Reports Lagoon Phase I & II - April 2008 Appendix A_Phase II ESA Attachment B_Data Validation Memo M-DV-032708.doc" Lagoon Phase I & II - April 2008 Appendix A_Phase II ESA Attachment C_FSDSs Soil FSDS.pdf" Attachment C ESDSs Water FSDS.pdf" Lagoon Phase I & II - April 2008 Appendix A Phase II ESA Lagoon Phase I & II - April 2008 Appendix A_Phase II ESA Attachment D_Sampling Photographs Photo Array 03.27.08.doc" Phase II HSP.rtf" Lagoon Phase I & II - April 2008 Appendix A Phase II ESA Attachment E Health and Safety Plan Lagoon Phase I & II - April 2008 Appendix A_Phase II ESA Attachment F_Boring Logs boring logs_032708.pdf" Lagoon Phase I & II - April 2008 Appendix B_Resumes St John, AM--2007.doc" Titkemeier, Kelly--2007.doc" Lagoon Phase I & II - April 2008 Appendix B Resumes Lagoon Phase I & II - April 2008 Appendix C_User Data Request User Data Request BHPC1.pdf" Lagoon Phase I & II - April 2008 Appendix D_Title Report Fig D-1_Taxlot IDs.pdf" N08-01806.pdf" Lagoon Phase I & II - April 2008 Appendix D_Title Report Lagoon Phase I & II - April 2008 Appendix E_EDR Geocheck Report 2172082_2.pdf" Lagoon Phase I & II - April 2008 Appendix F_Aerial Photographs Fig_2007_Historic Aerial.pdf" Fig_1936_Historic Aerial.pdf" Lagoon Phase I & II - April 2008 Appendix F_Aerial Photographs Fig_1939_Historic Aerial.pdf" Lagoon Phase I & II - April 2008 Appendix F_Aerial Photographs Lagoon Phase I & II - April 2008 Appendix F_Aerial Photographs Fig 1944 Historic Aerial.pdf" Lagoon Phase I & II - April 2008 Appendix F_Aerial Photographs Fig_1953_Historic Aerial.pdf" Lagoon Phase I & II - April 2008 Appendix F_Aerial Photographs Fig_1957_Historic Aerial.pdf" Fig_1961_Historic Aerial.pdf" Lagoon Phase I & II - April 2008 Appendix F_Aerial Photographs Lagoon Phase I & II - April 2008 Appendix F_Aerial Photographs Fig_1967_Historic Aerial.pdf" Lagoon Phase I & II - April 2008 Appendix F_Aerial Photographs Fig_1972_Historic Aerial.pdf" Appendix F_Aerial Photographs Lagoon Phase I & II - April 2008 Fig 1977 Historic Aerial.pdf" Lagoon Phase I & II - April 2008 Appendix F_Aerial Photographs Fig_1980_Historic Aerial.pdf" Lagoon Phase I & II - April 2008 Appendix F_Aerial Photographs Fig_1986_Historic Aerial.pdf" Lagoon Phase I & II - April 2008 Fig_1991_Historic Aerial.pdf" Appendix F_Aerial Photographs Lagoon Phase I & II - April 2008 Appendix F_Aerial Photographs Fig_1996_Historic Aerial.pdf" Fig_2002_Historic Aerial.pdf" Lagoon Phase I & II - April 2008 Appendix F Aerial Photographs Lagoon Phase I & II - April 2008 Appendix G_Sanborn Fire Insurance Maps 2172082_3.pdf" Lagoon Phase I & II - April 2008 Appendix H_Polk City Directories 21720824.pdf" PQD0178Dioxin.pdf" Appendix I_Prior Enviro Site Assessments Lagoon Phase I & II - April 2008 Lagoon Phase I & II - April 2008 Appendix I_Prior Enviro Site Assessments tef_values.pdf" Lagoon Phase I & II - April 2008 Appendix I_Prior Enviro Site Assessments 2006 LA soil sludge coc.pdf" Lagoon Phase I & II - April 2008 Appendix I_Prior Enviro Site Assessments 2006 LA soil sludge.pdf" Lagoon Phase I & II - April 2008 Appendix I Prior Enviro Site Assessments 2006 Neauman soil sludge coc.PDF" 2006 Neauman soil sludge.pdf" Lagoon Phase I & II - April 2008 Appendix I Prior EnviroSite Assessments Lagoon Phase I & II - April 2008 Appendix I_Prior Enviro Site Assessments 2007 sludge.pdf"

Lagoon Phase I & II - April 2008 Appendix I_Prior Enviro Site Assessments biomonitoring services.pdf" Lagoon Phase I & II - April 2008 Appendix I_Prior Enviro Site Assessments Blue Heron Permit Final.pdf" Lagoon Phase I & II - April 2008 Determination of PCDD.pdf" Appendix I_Prior Enviro Site Assessments Lagoon Phase I & II - April 2008 Appendix I Prior Enviro Site Assessments expirementalsulphitewasteliquor pond.pdf" Lagoon Phase I & II - April 2008 Appendix I_Prior Enviro Site Assessments heron diox TEF.pdf" Lagoon Phase I & II - April 2008 Appendix I_Prior Enviro Site Assessments heron diox TEF.xls" pqd0178.PDF Lagoon Phase I & II - April 2008 Appendix I_Prior Enviro Site Assessments Lagoon Phase I & II - April 2008 Appendix J_Site Photographs Fig J1_Site Visit Photographs.pdf" Lagoon Phase I & II - April 2008 Figures Fig3 Boring Locations.pdf" Fig4_Zoning.pdf" Lagoon Phase I & II - April 2008 Figures Lagoon Phase I & II - April 2008 Figures Fig ES-1_Site Location.pdf" Fig ES-2_Zoning.pdf" Lagoon Phase I & II - April 2008 Figures Lagoon Phase I & II - April 2008 Figures Fig ES-3_Site Features.pdf" Lagoon Phase I & II - April 2008 Figures Fig ES-4_Boring Locations.pdf" Lagoon Phase I & II - April 2008 Fig1_Site Location.pdf" Figures Lagoon Phase I & II - April 2008 Figures Fig2_Site Features.pdf" Lagoon Phase I & II - April 2008 Tables Notes.xls' Lagoon Phase I & II - April 2008 Table 1-TEF.pdf" Tables Lagoon Phase I & II - April 2008 Tables Table 2-GW Data.pdf" Lagoon Phase I & II - April 2008 Tables Table 3-GW Data.pdf" Lagoon Phase I & II - April 2008 Tables Table 4-GW Data.pdf" Lagoon Phase I & II - April 2008 Table 5-GW Data.pdf" Tables Lagoon Phase I & II - April 2008 Tables Table Notes.pdf" T-GW Data.xls" Lagoon Phase I & II - April 2008 Tables T-TEF.xls" Lagoon Phase I & II - April 2008 Tables Lagoon Phase I & II - April 2008 Rd-Phase I ESA.pdf" Text Mill Phase I - April 2008 1-Exec Summary - Phase I.pdf" Mill Phase I - April 2008 2-Figures.pdf" Mill Phase I - April 2008 3-Appendix A.pdf" Mill Phase I - April 2008 4-Appendix B.pdf" Mill Phase I - April 2008 5-Appendix C.pdf" Mill Phase I - April 2008 6-Appendix D.pdf" Smurfit APA 1 - Asset Purchase Agreement BHP-Smurfit.pdf" 2 - Disclosure Schedules to APA - without employee data.pdf" Smurfit APA Smurfit APA 3 - Environmental Side Letter.pdf" Smurfit APA 4 - Indemnification Side Letter.pdf" 5 - Promissory Note.pdf" Smurfit APA Smurfit APA 6 - Transition Services Agreement.pdf" Smurfit APA 7 - Supply Agreement.pdf" Smurfit APA 8 - Lease Agreement.pdf" Smurfit APA 9 - Smurfit Employee Side Letter.pdf" Smurfit APA Closing Documents List.pdf" 699-0010-GM-C-10131sht 1 RECORD of SURVEY MILL SITE (_20081003_0010).pdf" Survey Mill Survey_Mill 699-0010-GM-C-10131sht 2 RECORD of SURVEY MILL SITE (_20081003_0011).pdf" 699-0010-GM-C-10131sht 3 RECORD of SURVEY MILL SITE (_20081003_0012).pdf" Survey_Mill Survey_Mill 699-0010-GM-C-10131sht 4 RECORD of SURVEY MILL SITE (_20081003_0013).pdf" Survey_Mill 699-0010-GM-C-10131sht 5 RECORD of SURVEY MILL SITE (_20081003_0014).pdf" 699-0010-GM-C-10187 MILL LAND SURVEY PS 21487 (_20081003_0009).pdf" Survey_Mill Survey_Mill 699-0010-GM-C-10245 RECORD of SURVEY-PROPERTY LINE ADJUSTMENT for PGE (_20081003_0001).pdf" Summary of tools.pdf" Trustee's Title Report - 1st Rev - June 21, 2011.pdf" V 2-1 - WF Historical Asset Assessment Matrix.pdf" 120524_Willamette Falls Site Access Standards.pdf" Blue Heron Building Site Plan.pdf" DE UCC results - BLUE HERON PAPER COMPANY.pdf" Lagoon Chain of Title Report - April 2008.pdf" Prelim Title - July 2005.pdf" Snap Shot_Blue Heron Paper Office Building.docx" 699 - General Mill acltstk.dmp" 699 - General Mill plot.log" 699 - General Mill 699-0000-G-D-10800 #1 #3 #4 PM ROPE RUNS.dwg" 699-0000-GM-B-11217 MILL PAPER MAKING FLOW DIAGRAM.dwg" 699 - General Mill 699 - General Mill 699-0000-GM-D-06234 SNC OC MILL MAP.bak" 699 - General Mill 699-0000-GM-D-06234 SNC OC MILL MAP.DWG" 699 - General Mill 699-0000-GM-D-6234 BHP MILL MAP- B&W.DWG" 699 - General Mill 699-0000-GM-D-6234 BHP MILL MAP rev 4-color.DWG" 699 - General Mill 699-0000-GM-D-6234 BHP MILL MAP-color.DWG" 699 - General Mill 699-0000-GM-D-07486 CHEM & RAW MAT STORAGE MAP.dwg" 699 - General Mill 699-0000-GM-D-7486 CHEM_RAW MTRL STORAGE MAP.dwg" 699-0000-GM-D-7487 SHT1 AREA EVAC BASE MAP.dwg" 699 - General Mill 699 - General Mill 699-0000-GM-D-7487 SHT2 AREA EVAC BASE MAP.dwg' 699-0000-GM-D-7488 SHT1 FIRE SYSTEM MAP rev 7.dwg" 699 - General Mill 699-0000-GM-D-7488 SHT1 FIRE SYSTEM MAP.dwg" 699 - General Mill 699 - General Mill 699-0000-GM-D-7488 SHT2 FIRE SYSTEM MAP.dwg" 699 - General Mill 699-0000-GM-D-7488 SHT2 rev 7 FIRE & AMBULANCE PICK-UP MAP.dwg" 699 - General Mill 699-0000-GM-D-7489 AIR EMISSIONS MAP.dwg"

699 - General Mill 699-0000-GM-D-7490 RADIATION SOURCE MAP dwg" 699 - General Mill 699-0000-GM-D-7490 rev 5 RADIATION SOURCE MAP.dwg" 699-0000-GM-D-7491 SAFETY SHWR & EYE WASH MAP.dwg" 699 - General Mill 699-0000-GM-D-7492 SEWER SYSTEM MAP.bak" 699 - General Mill 699 - General Mill 699-0000-GM-D-7492 SEWER SYSTEM MAP.dwg" 699 - General Mill 699-0000-GM-D-7493 MILL DRAINAGE MAP.dwg" 699-0000-GM-D-07509 CL CODED MAP COMP.MAINT MANAGE SYS (OBSOLETE).dwg" 699 - General Mill 699 - General Mill 699-0000-GM-D-10261 MILL E SECOND FLOOR OFFICES - PLAN.dwg" 699 - General Mill 699-0000-GM-D-10262 MILL E SECOND FLOOR OFFICES - NORTH PLAN rev1.bak" 699-0000-GM-D-10262 MILL E SECOND FLOOR OFFICES - NORTH PLAN rev1.dwg" 699 - General Mill 699 - General Mill 699-0000-GM-D-10262 MILL E SECOND FLOOR OFFICES - NORTH PLAN.DWG" 699 - General Mill 699-0000-GM-D-10263 MILL E 2ND FLOOR OFFICES - SOUTH rev1.bak 699 - General Mill 699-0000-GM-D-10263 MILL E 2ND FLOOR OFFICES - SOUTH rev1.DWG' 699 - General Mill 699-0000-GM-D-10263 MILL E 2ND FLOOR OFFICES - SOUTH.DWG" 699-0000-GM-D-10851 SNC OC MILL MAP-TILE CHESTS & FILTER PLANT.dwg" 699 - General Mill 699 - General Mill 699-0000-GM-D-11045 sht 1 CORPORATE OFFICE BUILDING FLOOR PLAN - 1st FLOOR.dwg" 699 - General Mill 699-0000-GM-D-11045 sht 2 CORPORATE OFFICE BUILDING FLOOR PLAN - 2nd FLOOR.dwg" 699-0000-GM-D-11045 sht 3 CORPORATE OFFICE BUILDING FLOOR PLAN - BASEMENT.dwg" 699 - General Mill 699 - General Mill 699-0000-IP-D-10093 Effluent Spill Control System-No 1 & No 4 PM's Seal Water Collection P & ID.DWG" 699 - General Mill 699-0000-IP-D-10094 Effluent Spill Control System P & ID.DWG" 699 - General Mill 699-0000-P-B-10162 rev 1 WASTE WATER TREATMENT SYSTEM.dwg" 699 - General Mill 699-0000-P-B-10162 WASTE WATER TREATMENT SYSTEM.dwg" 699-0000-P-D-10697 SHT1 & 2 MILL UNDERGROUND PIPING GNRL LAYOUT rev1.dwg" 699 - General Mill 699 - General Mill 699-0000-P-D-10697 SHT1 & 2 MILL UNDERGROUND PIPING GNRL LAYOUT.dwg" 699 - General Mill 699-0000-P-D-10697 SHT1 & 2 MILL UNDERGROUND PIPING GNRL LAYOUTmod.dwg" 699-0001-GM-B-10151 MAJOR BULK CHEMICALS WASTE & OIL MILL LOCATIONS dwg" 699 - General Mill 699 - General Mill 699-0001-GM-D-10711 FLOOD INFO & ELEV FOR UPPER & LOWER WILLAMETTE.dwg" 699 - General Mill 699-0001-GM-D-10718 MILL AERIAL VIEW.dwg" 699-0010-GM-C-2430 LAND SURVEY- LAGOON- WEST LINN PS 21487 (20081003 0002.TIF).dwg" 699 - General Mill 699 - General Mill 699-0010-GM-C-10131 sht 1 RECORD of SURVEY- MILL SITE (20081003_010.TIF).bak" 699 - General Mill 699-0010-GM-C-10131 sht 1 RECORD of SURVEY- MILL SITE (20081003 010.TIF).dwg" 699-0010-GM-C-10131 sht 2 RECORD of SURVEY- MILL SITE (20081003_011.TIF).bak" 699 - General Mill 699-0010-GM-C-10131 sht 2 RECORD of SURVEY- MILL SITE (20081003_011.TIF).dwg" 699 - General Mill 699 - General Mill 699-0010-GM-C-10131 sht 3 RECORD of SURVEY- MILL SITE (20081003 012.TIF).bak" 699 - General Mill 699-0010-GM-C-10131 sht 3 RECORD of SURVEY- MILL SITE (20081003_012.TIF).dwg" 699 - General Mill 699-0010-GM-C-10131 sht 4 RECORD of SURVEY- MILL SITE (20081003_013.TIF).bak' 699-0010-GM-C-10131 sht 4 RECORD of SURVEY- MILL SITE (20081003 013.TIF).dwg" 699 - General Mill 699 - General Mill 699-0010-GM-C-10131 sht 5 RECORD of SURVEY- MILL SITE (20081003_014.TIF).bak" 699 - General Mill 699-0010-GM-C-10131 sht 5 RECORD of SURVEY- MILL SITE (20081003_014.TIF).dwg" 699 - General Mill 699-0010-GM-C-10132 sht 1 RECORD of SURVEY- LAGOON AREA (20081003_003.TIF).bak" 699-0010-GM-C-10132 sht 1 RECORD of SURVEY- LAGOON AREA (20081003_003.TIF).dwg" 699 - General Mill 699 - General Mill 699-0010-GM-C-10132 sht 2 RECORD of SURVEY- LAGOON AREA (20081003_004.TIF).bak" 699 - General Mill 699-0010-GM-C-10132 sht 2 RECORD of SURVEY- LAGOON AREA (20081003 004.TIF).dwg" 699 - General Mill 699-0010-GM-C-10132 sht 3 RECORD of SURVEY- LAGOON AREA (20081003_005.TIF).bak" 699-0010-GM-C-10132 sht 3 RECORD of SURVEY- LAGOON AREA (20081003_005.TIF).dwg" 699 - General Mill 699 - General Mill 699-0010-GM-C-10132 sht 4 RECORD of SURVEY- LAGOON AREA (20081003_006.TIF).bak" 699 - General Mill 699-0010-GM-C-10132 sht 4 RECORD of SURVEY- LAGOON AREA (20081003_006.TIF).dwg" 699-0010-GM-C-10132 sht 5 RECORD of SURVEY- LAGOON AREA (20081003_007.TIF).bak" 699 - General Mill 699 - General Mill 699-0010-GM-C-10132 sht 5 RECORD of SURVEY- LAGOON AREA (20081003_007.TIF).dwg" 699 - General Mill 699-0010-GM-C-10132 sht 6 RECORD of SURVEY- LAGOON AREA (20081003_008.TIF).dwg" 699-0010-GM-C-10132 sht 6 rev ! RECORD of SURVEY- LAGOON AREA (20081003_008.TIF).dwg" 699 - General Mill 699 - General Mill 699-0010-GM-C-10187 MILL LAND SURVEY PS 21487 (20081003_0009.TIF).dwg" 699 - General Mill 699-0010-GM-C-10245 RECORD of SURVEY- PROPERTY LINE ADJUSTMENT for PGE- (20081003_001.TIF).bak" 699 - General Mill 699-0010-GM-C-10245 RECORD of SURVEY- PROPERTY LINE ADJUSTMENT for PGE- (20081003_001.TIF).dwg" 699 - General Mill 699-0010-GM-C-10245 RECORD of SURVEY- PROPERTY LINE ADJUSTMENT for PGE- (20081003_001.TIG).back 699 - General Mill 699-0010-GM-D-10104 MILL MAP of TRAIN CROSSINGS.dwg" 699 - General Mill 699-0010-GM-D-10848 Y2K COMPLIANCE ZONES.dwg' 699 - General Mill 699-0010-GM-D-11208 sht 1 427 BLDG ASBESTOS SURVEY.dwg" 699 - General Mill 699-0010-GM-D-11208 sht 2 427 BLDG ASBESTOS SURVEY.dwg 699 - General Mill 699-0010-GM-D-11208 sht 3 427 BLDG ASBESTOS SURVEY.dwg" 699 - General Mill 699-0010-GM-D-11300 IRI MILL LAYOUT DWG.dwg" 699-0020-GM-D-10104 MILL MAP - RAILROAD TRACKS & CROSSINGS.DWG" 699 - General Mill 699 - General Mill 699-0200-S-D-10778 SHT1 MILL ENTRANCE SIGN FRAME STRUCTURE.dwg" 699 - General Mill 699-0200-S-D-10778 SHT2 MILL ENTRANCE SIGN FRAME STRUCTURE.dwg" 699 - General Mill 699-1000-IP-B-02399 DEPT 699 AMMONIA SYS P&ID.dwg" 699 - General Mill 699-1200-1-D-07435 CLARIFIER EFFLUENT DISCHARGE SURGE VALVE PLAN & DETAILS.dwg" 699-1200-IP-D-10581 SHT1 MILLWIDE WW USAGES P & ID.dwg" 699 - General Mill 699 - General Mill 699-1200-IP-D-10581 SHT2 MILLWIDE Mill H & G WW USAGES P & ID.dwg" 699 - General Mill 699-1200-IP-D-10581 SHT3 MILLWIDE #1PM WW USAGES P & ID.dwg" 699-1200-IP-D-10581 SHT4 MILLWIDE #3PM WW USAGES P & ID.dwg" 699 - General Mill 699 - General Mill 699-1200-IP-D-10581 SHT5 MILLWIDE #4PM WW USAGES P & ID.dwg" 699 - General Mill 699-1600-PS-D-11289 MILL STEAM FLOW.bak" 699-1600-PS-D-11289 MILL STEAM FLOW.dwg" 699 - General Mill 699 - General Mill 699-2000-S-D-10156 EFF. CONTAIN UTILITY TUNNEL-Wall Opngs..DWG" 699-2000-S-D-10157 EFF. CONTAIN. UTILITY TUNNEL-Access Platform Plan.dwg" 699 - General Mill 699 - General Mill 699-2000-S-D-10158 EFF. CONTAIN UTILITY TUNNEL-Access Platform Sec. & Dtls.dwg"

699 - General Mill 699-2000-S-D-10159 EFF. CONTAIN UTILITY TUNNEL-Ladder Sec. & Dtls..dwg" 699-7000-EP-D-06235 SHT 1 (VOIDED) POWER DISTRIBUTION ONELINE.dwg" 699 - General Mill 699-7000-EP-D-06235 SHT 2 (VOIDED) POWER DISTRIBUTION ONELINE.dwg 699 - General Mill 699 - General Mill 699-7000-EP-D-06235 SHT 3 (VOIDED) POWER DISTRIBUTION ONELINE.dwg" 699 - General Mill 699-7000-EP-D-06235 SHT 4 (VOIDED) POWER DISTRIBUTION ONELINE.dwg" 699-7000-EP-D-06235 SHT 5 (VOIDED) POWER DISTRIBUTION ONELINE.dwg" 699 - General Mill 699-7000-EP-E-10661 ONELINE MILL WIDE POWER DISTRIBUTION 4 plot version.dwg" 699 - General Mill 699 - General Mill 699-7000-EP-E-10661 ONELINE MILL WIDE POWER DISTRIBUTION.dwg" 699-9000-GM-D-07517-1 WATER RIGHTS DETERMINATION, CURRENT PROCESS WATER USAGE, BLOCK DIAGRAM.dwg" 699 - General Mill 699-9000-GM-D-07517-2 RIVER WATER INTAKE, CURRENT PROCESS WATER USAGE, BLOCK DIAGRAM.dwg" 699 - General Mill 699 - General Mill 699-9000-GM-D-07517-3 FILTERED WATER DISTRIBUTION, CURRENT PROCESS WATER USAGE, BLOCK DIAGRAM.dwg" 699 - General Mill 699-9000-GM-D-07517-4 EFFLUENT FLOWS CURRENT PROCESS WATER USAGE BLOCK DIAGRAM.dwg" 699-9000-GM-D-07517-4 EFFLUENT FLOWS, CURRENT PROCESS WATER USAGE, BLOCK DIAGRAM.dwg" 699 - General Mill 699-9000-GM-D-07518-1 WATER RIGHTS, CURRENT PROCESS & DIVERSION POINTS.dwg" 699 - General Mill 699 - General Mill 699-9000-GM-D-07518-2 WATER RIGHTS CURRENT PROCESS ATMOSPHERIC LOSSES dwg" 699-9000-GM-D-07518-3 WATER RIGHTS, CURRENT PROCESS WATER USAGE __ PEAK USAGE -- TANK FILL-UP.dwg" 699 - General Mill 699 - General Mill 699-9000-PS-B-11542 HEAT AND PWR BLNCE EXISITING ANUAL AVE.DWG" 699 - General Mill 699-9000-PS-B-11543 HEAT AND PWR BALNCE NO 5 TMP OFF PEAK HRS.dwg" 699 - General Mill 699-9000-PS-B-11544 HEAT AND PWR BALNCE NO 5 TMP 180 BDT ANNUAL AVE.dwg" 699 - General Mill 699-9000-PS-B-11545 HEAT AND PWR BALNCE FUTURE TURBINE GENERATOR ANNUAL AVE.dwg" 699-9105-EC-B-11727 EAST-WEST TRAVWELING WATER SCREEN MOTOR CONTROL.dwg" 699 - General Mill 699 - General Mill 699-9120-EM-B-11725 NORTH FISH SCREEN SHOWER PUMP.dwg" 699 - General Mill 699-9122-EM-B-11726 SOUTH FISH SCREEN SHOWER PUMP.dwg" 699-9600-CS-B-11492 LAB VIDEO CABLE RUN.dwg" 699 - General Mill 699 - General Mill 699-9600-CS-B-11873 ETHERNET NETWORK CABLE RUN.dwg" 699 - General Mill 699-9600-TS-D-10322 SHT2 PHONE SYSTEM MAP bak' 699 - General Mill 699-9600-TS-D-10322-1 rev 1 MILL PHONE SYS MAP - INDEX.dwg" 699 - General Mill 699-9600-TS-D-10322-2 MILL PHONE SYS MAP - MISC LOCOs.dwg" 699-9600-TS-D-10323 PHONE SYSTEM MAP CORPORATE OFFICE BSMNT.dwg" 699 - General Mill 699-9600-TS-D-10323 rev2.dwg" 699 - General Mill 699 - General Mill 699-9600-TS-D-10324 PHONE SYSTEM MAP CORPORATE OFFICE 1ST FLR.dwg" 699 - General Mill 699-9600-TS-D-10324 rev 2.dwg" 699 - General Mill 699-9600-TS-D-10325 PHONE SYSTEM MAPS CORP OFFICE.dwg" 699 - General Mill 699-9600-TS-D-10326 PHONESYSTEM MAPS PERSONNEL, FIRST AID GUARD SHACK.dwg" 699 - General Mill 699-9600-TS-D-10327 PHONE SYSTEM MAP MILL E 4TH FLR.dwg" 699-9600-TS-D-10327 rev 2 PHONE SYSTEM MAP MILL E 4TH FLR.dwg" 699 - General Mill 699 - General Mill 699-9600-TS-D-10328 PHONE SYSTEM MAP MILL E 3RD FLR.bak" 699 - General Mill 699-9600-TS-D-10328 PHONE SYSTEM MAP MILL E 3RD FLR.dwg" 699 - General Mill 699-9600-TS-D-10329 PHONE SYSTEM MAP MILL E 2ND FLOOR SOUTH.bak" 699 - General Mill 699-9600-TS-D-10329 PHONE SYSTEM MAP MILL E 2ND FLOOR SOUTH.dwg" 699 - General Mill 699-9600-TS-D-10330 PHONE SYSTEM MAP MILL E 2ND FLOOR NORTH.dwg" 699 - General Mill 699-9600-TS-D-10330 rev 3 PHONE SYSTEM MAP MILL E 2ND FLOOR NORTH.dwg" 699-9600-TS-D-10331 PHONE SYSTEM MAP MILL E 1ST FLR.bak" 699 - General Mill 699 - General Mill 699-9600-TS-D-10331 PHONE SYSTEM MAP MILL E 1ST FLR.dwg" 699 - General Mill 699-9600-TS-D-10332 PHONE SYSTEM MAP #1PM.dwg" 699 - General Mill 699-9600-TS-D-10333 PHONE SYSTEM MAP #3PM.dwg 699 - General Mill 699-9600-TS-D-10334 PHONE SYSTEM MAP #4PM.dwg" 699 - General Mill 699-9600-TS-D-10335 PHONE SYSTEM MAP MILL B DEINK.dwg" 699 - General Mill 699-9600-TS-D-10336 SHT1 PHONE SYSTEM MAP MILL H REFINING & DEINK.dwg" 699 - General Mill 699-9600-TS-D-10336 SHT2 PHONE SYSTEM MAP MILL H REFINING & DEINK.dwg" 699-9600-TS-D-10337 PHONE SYSTEM MAP MACHINE MILLWRIGHT SHOP.dwg" 699 - General Mill 699 - General Mill 699-9600-TS-D-10338 PHONE SYSTEM MAP MILL O.dwg" 699 - General Mill 699-9900-E-D-10019 TRANSFORMER SIZE&TYPE HAZ COMMUNICATION-MILL LOCATIONS rev1.dwg" 699 - General Mill 699-9900-E-D-10019 TRANSFORMER SIZE&TYPE HAZ COMMUNICATION-MILL LOCATIONS.dwg" 699 - General Mill 699-9900-PW-D-10831 FILTERED WATER, MILL, AERIAL VIEW.bak" 699 - General Mill 699-9900-PW-D-10831 FILTERED WATER, MILL, AERIAL VIEW.dwg" acltstk.dmp" 699 - General Mill 699 - General Mill plot.log" Fig02 WaterManagement.pdf"

Appendix C Boring Logs

	RM	ERM-V 1001 S Portlan Teleph	Vest, Inc. 5.W. 5th Aven d, Oregon 972 one: 503-488-	ue, Suite 1010 204 -5282	PAG	501-01 E 1 OF 1
CLIE	NT Portla	and Me	etro		PROJECT NAME Blue Heron	
PRO	JECT NUN	IBER	0170026		PROJECT LOCATION Oregon City	
DAT	E STARTE	D _9/	7/12	COMPLETED 9/7/12	GROUND ELEVATION HOLE SIZE 2 inch	
CON	TRACTOR	Cas	cade Drilling		GROUND WATER LEVELS:	
EQU	PMENT	Direct	Push		AT TIME OF DRILLING	
LOG	GED BY	B. Rot	binson	CHECKED BY M. Appel	AT END OF DRILLING	
NOT	ES Refus	al at 1	0.5 feet due to	o basalt rock.	AFTER DRILLING	
0. DEPTH (ft)	SAMPLE	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	(mqq) CI A
- - - <u>2.5</u>	-	GM		Asphalt. SILTY GRAVEL WITH SAND (GM) material. POORLY-GRADED SAND (SP): da	rk brown, fine, poorly-graded, slightly moist, increasing to moist with	-
		SP		depth.	n laminations of silty sand	3 0 0
9 30 10.0	F01-01-9.5-10.5 (1105)			At 10 feet bgs, as above except with		16
5/12 1.			10.5	הי זע ובבי ואש, מא מאטעה פארהאר האוין איין איין איין איין איין איין איין	Bottom of borehole at 10.5 feet	1.0
GENERAL BH / TP / WELL - GINT STD US.GDT - 11						

ERM-West, Inc. 1001 S.W. 5th Avenue, Suite 1010 Portland, Oregon 97204 Telephone: 503-488-5282	F01-02 PAGE 1 OF 1
CLIENT Portland Metro PROJECT NUMBER 0170026	PROJECT NAME Blue Heron PROJECT LOCATION Oregon City
DATE STARTED _9/7/12 COMPLETED _9/7/12 CONTRACTOR _Cascade Drilling	GROUND ELEVATION HOLE SIZE _4 inch GROUND WATER LEVELS:
EQUIPMENT Hand Auger LOGGED BY B. Robinson CHECKED BY B. Robinson NOTES Refusal at 2 feet due to concrete slab. B. Robinson	AT TIME OF DRILLING AT END OF DRILLING AFTER DRILLING
00 DEPTH (ft) (ft) U.S.C.S. GRAPHIC LOG	MATERIAL DESCRIPTION
	nd and fine gravel.
	Bottom of borehole at 2.0 feet.

GENERAL BH / TP / WELL - GINT STD US.GDT - 11/5/12 12:46 - \\WDPORDC02UDATAPORERM\GINTBLUE HERONBLUEHERON.GPJ

E		RM-V 001 S Portlan Telepho	Vest, Ir .W. 5tł d, Oreę one: 50	nc. h Avenue, gon 97204)3-488-52	Suite 1010 4 82				F07-01 PAGE 1 OF 1
CLIEN	IT Portla	nd Me	tro				PROJECT NAME Blue Heron		
PROJ		BER	01700	026			PROJECT LOCATION Oregon City		
DATE	STARTE	D _9/7	7/12			9/7/12	GROUND ELEVATION	HOLE SIZE	4 inch
CONT	RACTOR	Cas	cade D	rilling			GROUND WATER LEVELS:		
EQUIF	MENT	Hand A	Auger				AT TIME OF DRILLING		
LOGG	ED BY	B. Rob	inson		CHECKED BY	B. Robinson	AT END OF DRILLING		
NOTE	S Refus	al at 1	foot du	ue to woo	d and gravel ballast.		AFTER DRILLING		
0.0 (ft)	SAMPLE IDENTIFICATION	U.S.C.S.	GRAPHIC LOG				MATERIAL DESCRIPTION		
	F07-01-0.5-1.0 (1340)	GM		0.3	Asphalt. SILTY GRAVEL WIT	H SAND (GM): dar	k grey, gravel with silt and sand, some woo	d, hydrocarbon	odor, slightly moist.
							Bottom of borehole at 1.0 feet.		

ERM-West, Inc. 1001 S.W. 5th / Portland, Orego Telephone: 503	:. Avenue, Suite 1010 on 97204 8-488-5282	F PAG	E 1 OF 2
CLIENT _ Portland Metro		PROJECT NAME Blue Heron	
PROJECT NUMBER 017002	26	PROJECT LOCATION Oregon City	
DATE STARTED 9/7/12	COMPLETED <u>9/7/12</u>	GROUND ELEVATION HOLE SIZE _2 inch	
CONTRACTOR Cascade Dril	lling	GROUND WATER LEVELS:	
EQUIPMENT Direct Push		AT TIME OF DRILLING	
LOGGED BY B. Robinson	CHECKED BY B. Robinson	AT END OF DRILLING	
NOTES <u>Refusal at 17.5 feet</u> ,	possibly weathered basalt.	_ AFTER DRILLING	
G DEPTH (ft) SAMPLE IDENTIFICATION RECOVERY % U.S.C.S.	COG LOG	MATERIAL DESCRIPTION	PID (mqq)
	Concrete.		
	SILTY SAND (SM): dark brown,	fine sand, some fine gravel, slightly moist.	
	같아요. 같이 같아요.		0.9
	[수집] [사람]		
_ 2.5			0.5
	아이에 승규는		
— — F16-01-3-4 (1550)			
			0.0
5.0			0.9
	Brick fragments at 5 feet bgs.		
	1월 21일 같은 1일 같은 1일		
40 SM			
	At 8 feet bgs, as above except fir	ne to medium sand, no gravel, moist.	
	19년 2월 19월 2월 19월 2월		0.4
<u>•</u>			
	이 가슴. 같은 것		
	사람이 같은 것		
12.5	At 12 feet bgs, as above except of	brangish-brown.	
			0.3
ט.כו ט.כו פ			

E		RM-W 001 S Portlan	/est, lı .W. 5t d, Ore one: 50	nc. h Aven gon 97 03-488	ue, Suite 1010 204 -5282	PAG	=16-01 ie 2 OF 2
CLIEN	IT Portla	nd Me	tro			PROJECT NAME Blue Heron	
PROJ	ECT NUM	BER	0170	026		PROJECT LOCATION Oregon City	
DATE	STARTE	D _9/7	7/12		COMPLETED 9/7/12	GROUND ELEVATION HOLE SIZE _2 inch	
CONT	RACTOR	Cas	cade D	Drilling		GROUND WATER LEVELS:	
EQUIF	MENT _[Direct I	Push			AT TIME OF DRILLING	
LOGG	ED BY	3. Rob	inson		CHECKED BY B. Robinson	AT END OF DRILLING	
NOTE	S Refus	al at 1	7.5 fee	et, poss	sibly weathered basalt.	AFTER DRILLING	
HL (H) (ff) 15.0	SAMPLE IDENTIFICATION	RECOVERY %	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	PID (ppm)
			SM		SILTY SAND (SM): dark brown,	fine sand, some fine gravel, slightly moist. <i>(continued)</i>	
	F16-01-15.5-16.5 (1555)	100	GW		WELL-GRADED GRAVEL (GW): olive grey, fine gravel, some fine to coarse sand, wet.	0
 			GM		SILTY GRAVEL WITH SAND (G	SM): olive grey, fine to coarse gravel, fine to coarse sand, well-graded,	0
17.5					117.5	Bottom of borehole at 17.5 feet.	1

ERM	ERM- 1001 Portlar Teleph	West, Ir S.W. 5tl nd, Oreg none: 50	nc. n Avenue, Suite 1010 gon 97204 13-488-5282		F18-01 PAGE 1 OF 1
	Portland M	etro		PROJECT NAME Blue Heron	
PROJECT	NUMBER	01700	26	PROJECT LOCATION Oregon City	
DATE STA	RTED 9	/15/12	COMPLETED 9/15/12	GROUND ELEVATION	HOLE SIZE _ 4 inch
CONTRAC	TOR Ca	scade D	rilling	GROUND WATER LEVELS:	
EQUIPMEN	Grab	Sample		AT TIME OF DRILLING	
LOGGED E	BY B. Ro	binson	CHECKED BY B. Robinson	AT END OF DRILLING	
NOTES				AFTER DRILLING	
O DEPTH O (ft) SAMPLE IDENTIFICATION	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
	SP	200	0.3 Concrete.	wn fine sand some silt with brick and concret	to fragmonts dry Fill material
				Bottom of borehole at 0.5 feet.	ie fragments, ury. Thi Material.

ERM	ERM-V 1001 S Portlan Teleph	Vest, lı 5.W. 5t d, Ore one: 50	nc. h Avenue, Suite 1010 gon 97204)3-488-5282	F19-01 PAGE 1 OF 1
	rtland Me	etro		PROJECT NAME Blue Heron
PROJECT N	UMBER	0170	026	PROJECT LOCATION Oregon City
DATE STAR	TED _9/	7/12	COMPLETED 9/7/12	GROUND ELEVATION HOLE SIZE _4 inch
CONTRACT	OR Cas	cade D	Drilling	GROUND WATER LEVELS:
EQUIPMENT	Hand /	Auger		AT TIME OF DRILLING
LOGGED BY	<u>М. Ар</u>	oel	CHECKED BY B. Robinson	AT END OF DRILLING
NOTES Re	fusal at 1	.5 feet	due to large 8-inch rocks throughout soil materia	AFTER DRILLING
G DEPTH G (ft) SAMPLE IDENTIFICATION	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
			Asphalt. 0.5	
F10-01:0.5 (1645)	-1.5 GW		WELL-GRADED GRAVEL (GW): fine t	o coarse gravel, few to little fines, very poorly sorted, no staining, no odor, moist.
				Bottom of borehole at 1.5 feet.

E		ERM-V 001 S Portlan Teleph	Vest, Ir .W. 5t d, Ore one: 50	nc. h Avenu gon 972)3-488-{	e, Suite 1010 04 5282			F21-01 PAGE 1 OF 1
CLIEN	IT Portla	ind Me	etro				PROJECT NAME Blue Heron	
PROJ	ECT NUM	BER	01700	026			_ PROJECT LOCATION _ Oregon City	
DATE	STARTE	D _9/	7/12		COMPLETED	9/7/12	GROUND ELEVATION	HOLE SIZE 4 inch
CONT	RACTOR	Cas	cade D	rilling			GROUND WATER LEVELS:	
EQUIF		Hand A	Auger				AT TIME OF DRILLING	
LOGG	ED BY	M. App	bel		CHECKED BY	B. Robinson	AT END OF DRILLING	
NOTE	S Refus	al at 2	.0 due	to large	rocks throughout soi	l material.	AFTER DRILLING	
o DEPTH o (ft)	SAMPLE IDENTIFICATION	U.S.C.S.	GRAPHIC LOG				MATERIAL DESCRIPTION	
				0.5	Asphalt.			
	F19-01:0.5-2.0 (1715)	SW		2.0	WELL-GRADED SA moist.	AND (SW): dark br	own, medium to very coarse sand, coars	e gravel, poorly sorted, no odor, no staining,

Bottom of borehole at 2.0 feet.

	RM 1	ERM-W 1001 S Portlan Felepho	/est, Ir .W. 5tl d, Oregone: 50	nc. n Avenue, Suite 1010 gon 97204 13-488-5282			F38-01 PAGE 1 OF 1
CLIEN	NT Portla	and Me	tro		PROJECT NAME Blue Heron		
PROJ		IBER	01700	26	PROJECT LOCATION Oregon City		
DATE	STARTE	D 9/7	7/12	COMPLETED _9/7/12	GROUND ELEVATION	HOLE	SIZE _ 2 inch
СОИТ	RACTOR	Cas	cade D	rilling	GROUND WATER LEVELS:		
EQUI		Direct I	Push		$\overline{2}$ at time of drilling <u>5.32 ft</u>		
LOGO	SED BY	M. App	el	CHECKED BY B. Robinson	AT END OF DRILLING		
NOTE	S				AFTER DRILLING		
o DEPTH (ft)	SAMPLE IDENTIFICATION	U.S.C.S.	GRAPHIC LOG	MATERIAL DE	ESCRIPTION	PID (ppm)	WELL DIAGRAM
0.0				Asphalt with multiple lifts.			
	-			WELL-GRADED GRAVEL (GW): dark to few clay, few silt, subangular to subroun no odor, moist.	prown, fine to coarse gravel, cobbles, ded gravel, poorly sorted, no staining,	0.1	
 <u>2.5</u> 	-	GW		At 2 feet bgs, many 4- to 5-inch diamete 3.5 No recovery due to soft fill with large roc	r cobbles. ks.	1	
TP / WELL - GINT STD US.GDT - 11/5/12 12:46 - \\\WDPORDCO2DDATAPORERMGINTBLUE HEROMBLUEHERON GP. 0.01 - 0.02 - 0.0	F38-01: 5-10 (1020)			 5.0 	o very coarse sand, fine to coarse odor. Poor recovery.	3.6	Temporary well
GENERAL DI							

ERM T	ERM-W 001 S Portland Telepho	/est, Ir .W. 5tl d, Oreę one: 50	nc. h Avenue, Suite 1010 igon 97204 03-488-5282	F42-01 PAGE 1 OF 1
CLIENT Portla	Ind Me	tro	PROJECT NAME Blue Heron	
PROJECT NUM	BER _	01700	026 PROJECT LOCATION Oregon City	
DATE STARTE	D _ 9/7	/12	COMPLETED _9/7/12 GROUND ELEVATION HOLE SIZE _4 in	ch
CONTRACTOR	Case	cade D	Drilling GROUND WATER LEVELS:	
	Hand A	uger	AT TIME OF DRILLING	
LOGGED BY	M. App	el	CHECKED BY B. Robinson AT END OF DRILLING	
NOTES Refus	al at 2.	5 feet	adue to large rocks throughout. AFTER DRILLING	
G DEPTH G (ft) SAMPLE IDENTIFICATION	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	(mqq) OI
			0.4 Concrete with rebar.	
			Fill Material. Rocks and concrete rubble.	
	GW		WELL-GRADED GRAVEL (GW): dark brown, fine to coarse sand, fine to coarse gravel, few clay, very p sorted, dark staining, no odor, moist. Increased clay with depth from few to little.	oorly 0.4
2.5			2.5	

Bottom of borehole at 2.5 feet.

E	R M	ERM-V 1001 S Portlan Telepho	Vest, Inc. .W. 5th Avenue, Suite 1010 d, Oregon 97204 one: 503-488-5282		IB-01 PAGE 1 OF 1					
CLIEN	IT Port	land Me	tro	PROJECT NAME Blue Heron						
PROJ	ECT NU	MBER	0170026	PROJECT LOCATION Oregon City						
DATE	START	ED _9/*	14/12 COMPLETED 9/14/12	GROUND ELEVATION	HOLE SIZE 4 inch					
CONT	RACTO	R Grav	vity LLC	GROUND WATER LEVELS:						
EQUIF	MENT	Vibraco	pre	AT TIME OF DRILLING						
LOGG	ED BY	H. Sey	CHECKED BY B. Robinson	AT END OF DRILLING						
NOTE	S mud	line at 5	feet	AFTER DRILLING						
O DEPTH O (ft)	SAMPLE IDENTIFICATION	GRAPHIC LOG		MATERIAL DESCRIPTION						
			0.4 ORGANIC SOIL (OH): dark brown, with v	voody debris, no odor, no staining.						
 2.5			POORLY GRADED SAND WITH SILT (S Woody debris at 1.7 feet bgs.	ንP): dark brown, fine grain, no odor and no staining						
	IB-01-GRAB- 091412		Layer of fine sand at 2.5 feet bgs.							
		<u>=1: \.1.11</u> ;	0.1	Bottom of borehole at 3.1 feet						

GENERAL BH / TP / WELL - GINT STD US: GDT - 11/5/12 12:46 - IIWDPORDC02/DATAPORERM/GINT/BLUE HERON/BLUEHERON.GPJ

ERN		RM-W 001 S ortlan elepho	Vest, Ir .W. 5tl d, Ore one: 50	nc. h Avenu gon 972 03-488-5	e, Suite 1010 04 5282			IB-02 PAGE 1 OF 1		
	Portlar	nd Me	etro			PROJECT NAME Blue Heron				
PROJECT NUMBER 0170026						PROJECT LOCATION Oregon City				
DATE ST	DATE STARTED 9/14/12 COMPLETED 9/14/12					GROUND ELEVATION	HOLE SIZE	4 inch		
CONTRAC	CTOR	Grav	vity LL	С		GROUND WATER LEVELS:				
EQUIPME	NT _V	ibraco	ore			AT TIME OF DRILLING				
LOGGED	LOGGED BY H. Seyl CHECKED BY B. Robinson					AT END OF DRILLING				
NOTES _r	mudline	e at 5	.1 feet			AFTER DRILLING				
G DEPTH G (ft) SAMPLE	IDENTIFICATION	U.S.C.S.	MATERIAL DESCRIPTION							
		OH		0.4	ORGANIC SOIL (OH): dark brown, with	n woody debris, no odor, no staining.				
 		SP- SM			POORLY GRADED SAND WITH SILT Layer of woody debris at 1.7 feet bgs.	(SP-SM): dark brown, fine sand, no odor, no	staining.			
2.5	2-2.5-3.0- 191412			3.0	Layer of fine sand at 2.5 feet bgs.	Bottom of borehole at 3.0 feet				

ERM	ERM-V 1001 S Portlar Teleph	Vest, In S.W. 5th Id, Oreg one: 50	c. 1 Avenue, Suite 1010 gon 97204 3-488-5282	IB-0 PAGE 1 OF	3 1				
CLIENT Por	land Me	etro		PROJECT NAME Blue Heron					
PROJECT NU	MBER	01700	26	PROJECT LOCATION Oregon City					
DATE START	'ED _9/	14/12	COMPLETED <u>9/14/12</u>	GROUND ELEVATION HOLE SIZE _4 inch					
CONTRACTO	R Gra	vity LLC	2	GROUND WATER LEVELS:					
EQUIPMENT	Vibrac	ore		AT TIME OF DRILLING					
LOGGED BY	H. Se	/l	CHECKED BY B. Robinson	AT END OF DRILLING					
NOTES muc	lline at 5	5.3 feet		AFTER DRILLING	_				
G DEPTH (ft) SAMPLE IDENTIFICATION	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION						
	ОН		0.4 ORGANIC SOIL (OH): dark brown, with	n woody debris, no odor, no staining.					
	P- SP-		POORLY GRADED SAND WITH SILT Layer of woody debris at 1 foot bgs. Layer of fine grain sand at 1.5 feet bgs.	(SP): dark brown, fine grain, no odor, no staining.					
2.5 	D-		3.3						
				Bottom of borehole at 3.3 feet.					

ERM Te	RM-W 001 S. ortland elepho	/est, Inc. W. 5th Av d, Oregon ne: 503-4	venue, Suite 1010 97204 188-5282			TD-01 PAGE 1 OF 1			
		<u>0170026</u> //10							
	<u>9//</u>	/ IZ							
			ng						
NOTES Refusa	il at 8	teet due t	o basalt bedrock						
O DEPTH O (ft) SAMPLE IDENTIFICATION	U.S.C.S.	GRAPHIC LOG	MATERIAL	DESCRIPTION	PID (ppm)	WELL DIAGRAM			
 2.5	SC	0.8	Asphalt. Fill material. Wood, bricks, ash, sand CLAYEY SAND (SC): dark brown, ve very poorly sorted, no odor, moist. Sm	and gravel, no odor, no staining, dry. The state of the s	0.2				
	SW		WELL-GRADED SAND (SW): grey, f no odor, no staining, moist.	fine to medium sand, moderately sorted,	0.1	Temporary			
		7.0	$\underline{\vee}$ At 6 feet bgs, as above except with sh	neen and petroleum odor.	0.2				
7.5	SC	8.0	CLAYEY SAND (SC): fine to coarse s 7.8 feet bgs, petroleum odor, saturate At 7.8 feet bgs, as above except fine t	sand, very poorly sorted, grey staining to ed. to coarse, rounded gravel.					
			Bottom of bo	prehole at 8.0 feet.					

E	ERM-West, Inc.TD-021001 S.W. 5th Avenue, Suite 1010PAGE 1 OF 1Portland, Oregon 97204PAGE 1 OF 1Telephone: 503-488-5282Telephone: 503-488-5282									
CLIER	NT Portla	nd Me	etro			PROJECT NAME Blue Heron				
PROJ	ECT NUM	BER	01700	26		PROJECT LOCATION Oregon City				
DATE	STARTE	D _9/	7/12		COMPLETED 9/7/12	GROUND ELEVATION HOLE SIZE _2 inch				
CONT	RACTOR	Cas	cade Dr	illing		GROUND WATER LEVELS:				
EQUI		Direct	Push			AT TIME OF DRILLING				
LOGO	GED BY	M. Ap	pel		CHECKED BY B. Robinson	AT END OF DRILLING				
NOTE	S Refus	al at 9	feet du	e to fra	ctured basalt bedrock.	AFTER DRILLING				
O DEPTH (ft)	SAMPLE IDENTIFICATION	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION	PID (ppm)			
	Asphalt.									
F -	1	SP		1.0	POORLY-GRADED SAND (SP): brown	, fine to coarse sand, poorly sorted, no odor, no staining, increased				
	1			1.0	CLAYEY SAND (SC): brown fine to co	arse sand, poorly sorted, no odor, no staining, moist	0.4			
At 4.0 feet bgs, as above except very fine to medium sand, with trace cobbles.						e to medium sand, with trace cobbles.				
	- - - TD-02: 5-8 (1135)			6.5	SANDY I FAN CLAY (CL): very fine to r	nedium sand, low plasticity, soft, grey staining, petroleum odor, moist	0.4			
Algin -	-	CL		7.0		no to source and you postly sourced arou steining, post order in our model	74.0			
7.5	-	SP		3.0	moist.	ne to coarse sano, very poony sorted, grey staining, petroleum odor,	74.2			
RDC02\DA	_	SP		9.0	POORLY-GRADED SAND WITH GRAV sorted, grey staining, petroleum odor, m	/EL (SP): brown, fine to coarse sand, fine to coarse gravel, very poorly oist.				
VDPO						Bottom of borehole at 9.0 feet.				
GENERAL BH / TP / WELL - GINT STD US GDT - 11/5/12 12:46 - ^	Bottom of borehole at 9.0 feet.									

Appendix D Laboratory Analytical Reports Appendix E Data Validation Report

Memorandum

То:	Matt Mudge
Validator:	Irene Lavigne
Date:	31 October 2012
Subject:	Data Review of Blue Heron Mill Phase II Soil, Sediment, and Groundwater Samples Collected September 2012
Project Number:	0170026.12
Data Packages:	ALS Group Data Packages K1209054, K1209255, and K1209289

The quality of the data was assessed and any necessary qualifiers were applied following the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999, the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004, and the USEPA National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs), September 2005.

HOLDING TIME AND PRESERVATION EVALUATION

The samples were prepared and analyzed within the method-prescribed time period from the date of collection. The sample shipments were received at the laboratory within the method-prescribed preservation requirements. None of the data were qualified based on holding time or preservation exceedances.

BLANK EVALUATION

The method blank, trip blank, and rinsate blank sample results were nondetected for each of the target analytes with limited exceptions. Four samples were qualified as nondetected (U) based on associated blank detections. Additional sample data were not qualified on the basis of blank detections. Associated sample data were not qualified if the results were nondetected or if they exceeded five times the blank concentrations for organic compounds, or 10 times the blank concentrations for inorganic compounds. The blank detections and qualified sample data are shown in Table 1.

Environmental Resources Management

2875 Michelle Drive Suite 200 Irvine, CA 92606 (949) 623-4700 (949) 623-4711 (fax)

PAGE 2

BLANK SPIKE EVAUATION

The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) recoveries were within the laboratory's limits of acceptance with limited exceptions. No sample data were qualified based on the LCS outliers. Data were not qualified if only one recovery in an LCS/LCSD pair exceeded control limits, or if the data could be verified using an associated, in-control matrix spike recovery. The LCS outliers are presented in Table 2.

MATRIX SPIKE EVALUATION

The matrix spike (MS) and matrix spike duplicate (MSD) recoveries were within the laboratory's limits of acceptance with a number of exceptions. Twelve detected sample results for chromium were qualified as estimated and biased high (J+) due to an associated MS recovery that exceeded the maximum acceptable limits. Additional recovery outliers did not result in qualification of sample data. Data were not qualified if only one recovery in a MS/MSD pair exceeded control limits, if only the relative percent difference (RPD) exceeded control limits, or if the concentrations of the unspiked samples were greater than four times the amount spiked. The MS outliers and associated, qualified data are listed in Table 2.

ESTIMATED MAXIMUM POSSIBLE CONCENTRATION

The laboratory identified a number of dioxin and furan results as estimated maximum possible concentrations (EMPC). An EMPC value is the maximum possible concentration of a compound that could be present in the sample. This classification is used when all of the identification criteria for a given dioxin or furan compound are not met. Sample data identified as EMPC by the laboratory were qualified as nondetected (U), as shown in Table 3.

SURROGATE EVALUATION

The surrogate recoveries were within acceptable limits with few exceptions. No qualifiers were applied to the data based on the surrogate outliers. Data were not qualified if only one surrogate for a semivolatile organic compounds analysis exceeded control limits, or if a sample was diluted by a factor of 10 times or more, resulting in dilution of the surrogate compounds to a point where they did not provide useful recovery information. The outlying surrogate recoveries are listed in Table 4.

LABELED COMPOUND EVALUATION

Carbon-13 labeled isotope recoveries were reported for each sample submitted for dioxin/furan analysis. The recoveries of 10 labeled CDD and CDF compounds is a measure of the effectiveness of the laboratory and method to extract the compounds of interest. Five samples had recoveries of various compounds that were below the minimum acceptable limits. Detected sample results for the corresponding compounds were qualified as estimated (J). The outlying isotope recoveries are shown in Table 5.

FIELD DUPLICATE EVALUATION

One sample was collected and analyzed in duplicate. ERM calculated the RPD between detected results. The USEPA has not established control criteria for field duplicate samples; therefore, sample data are not qualified on the basis of field duplicate imprecision. Detected duplicate results and calculated RPDs are presented in Table 6.

ANALYTICAL DUPLICATE EVALUATION

The laboratory prepared and analyzed a number of samples as analytical duplicates. ERM calculated the RPD between detected results. The RPDs were less than 20 percent, with few exceptions. The primary sample results for five samples were qualified as estimated (J) based on the RPD exceedances. The analytical duplicate sample results and calculated RPDs are listed in Table 6.

PAGE 4

CALIBRATION RANGE EVALUATION

The laboratory noted two instances where the sample results exceeded the calibration range of the equipment. The sample results were qualified as estimated (J), and are shown in Table 7.

TPH EVALUATION

The laboratory noted that the chromatograms for a number of samples analyzed for diesel, residual, and gasoline range organics did not match the calibration standards for their respective compounds. The results for these samples were qualified as tentatively identified and estimated (NJ) as presented in Table 8.

OVERALL ASSESSMENT

No data were determined to be unusable. All of the data, including qualified data, can be used for decision-making purposes; however, the limitations indicated by the applied qualifiers should be considered when using the data. The quality of the data generated during this investigation is acceptable for the preparation of technically-defensible documents.

Table 1 Blank and Associated Suspect Sample Detections Soil, Water, and Sediment Samples Collected September 2012 Blue Heron Mill, Phase II ESA Oregon City, Oregon

Lab		Associated		Reported	Report		ERM
Package	Blank ID	Samples	Detected Compound	Concentration	Limit	Units	Qualifier
K1209054	K1209054-MB	NA	Zinc	0.9	0.5	mg/kg	
K1209054	KWG1211060-10 MB	See below	Diethyl phthalate	0.024	0.34	mg/kg	
K1209054	KWG1211060-10 MB	F16-01-3-4	Diethyl phthalate	0.11	2.3	mg/kg	2.3 U
K1209054	KWG1211060-10 MB	F16-01-15.5-16.5	Diethyl phthalate	0.11	2.6	mg/kg	2.6 U
K1209054	P160146 MB	NA	OCDD	0.463	5.0	ng/kg	
K1209289	K1209289-MB	NA	Lead	0.070	0.040	mg/L	
K1209289	RINSATE-091512	See below	Chromium	0.4	0.2	µg/L	
K1209289	RINSATE-091512	F34-01-SP-091512	Chromium	2.0	0.2	µg/L	2.0 U
K1209289	RINSATE-091512	NA	Copper	0.4	0.1	µg/L	
K1209289	RINSATE-091512	NA	Lead	0.11	0.02	µg/L	
K1209289	RINSATE-091512	See below	Nickel	0.5	0.2	µg/L	
K1209289	RINSATE-091512	F34-01-SP-091512	Nickel	4.0	0.2	µg/L	4.0 U
K1209289	RINSATE-091512	NA	Zinc	1.1	0.5	µg/L	
K1209289	RINSATE-091512	NA	OCDD	18.9	61.0	pg/L	
K1209289	EQ1200546-01 MB 09/27	NA	OCDD	34.6	50.0	pg/L	
K1209289	EQ1200546-01 MB 09/27	NA	OCDF	5.88	50.0	pg/L	
K1209289	EQ1200548-01 MB 10/03	NA	1,2,3,4,6,7,8-HpCDD	0.526	2.5	ng/kg	
K1209289	EQ1200548-01 MB 10/03	NA	OCDD	4.33	5.0	ng/kg	
K1209289	EQ1200548-01 MB 10/03	NA	1,2,3,4,6,7,8-HpCDF	0.244	2.5	ng/kg	
K1209289	EQ1200548-01 MB 10/03	NA	OCDF	1.03	5.0	ng/kg	
K1209289	EQ1200548-01 MB 10/03	NA	Total Hepta-Dioxins	1.07	2.5	ng/kg	
K1209289	EQ1200548-01 MB 10/03	NA	Total Hepta-Furans	0.244	2.5	ng/kg	
K1209289	EQ1200551-01 MB 10/05	NA	1,2,3,4,6,7,8-HpCDD	1.11	2.5	ng/kg	
K1209289	EQ1200551-01 MB 10/05	NA	OCDD	6.81	5.0	ng/kg	
K1209289	EQ1200551-01 MB 10/05	NA	1,2,3,4,6,7,8-HpCDF	0.190	2.5	ng/kg	
K1209289	EQ1200551-01 MB 10/05	NA	OCDF	0.462	5.0	ng/kg	

Table 1 Blank and Associated Suspect Sample Detections Soil, Water, and Sediment Samples Collected September 2012 Blue Heron Mill, Phase II ESA Oregon City, Oregon

Lab		Associated		Reported	Report		ERM
Package	Blank ID	Samples	Detected Compound	Concentration	Limit	Units	Qualifier
K1209289	EQ1200551-01 MB 10/05	NA	Total Hepta-Dioxins	2.19	2.5	ng/kg	
K1209289	EQ1200551-01 MB 10/05	NA	Total Hepta-Furans	0.391	2.5	ng/kg	

Data packages reviewed: K1209054, K1209255, K1209289

Key:

MB = Method blank

mg/kg = Milligrams per kilogram

ng/kg = Nanograms per kilogram

mg/L = Milligrams per liter

 $\mu g/L$ = Micrograms per liter

pg/L = Picograms per liter

U = Sample result qualified as nondetected

NA = Not applicable; associated sample data not affected

OCDD = Octachlorodibenzo-p-dioxin

OCDF = Octachlorodibenzofuran

HpCDD = Heptachlorodibenzo-p-dioxin

HpCDF = Heptachlorodibenzofuran

Table 2 Spike Recoveries Outside of Acceptable Limits Soil, Water, and Sediment Samples Collected September 2012 Blue Heron Mill, Phase II ESA Oregon City, Oregon

Lab	Spike	Associated		Recovery	Limit		RPD	Sample	ERM	
Package	Sample ID	Sample	Compound	(%)	(%)	RPD	Limit	Result	Qualifier	
		-								
LCS/LCSD										
K1209054	KWG1210972-3	NA	Acetone	149	68-135					
K1209289	KWG1211062 LCS/LCSD	NA	2-Nitrophenol	96/87	44-95	9	40			
K1209289	KWG1211062 LCS/LCSD	NA	4-Chloro-3-methylphenol	104/101	44-101	4	40			
			MS/MSD			1				
1/1 00005 /				100.0	FE 405					
K1209054	F38-01-SOIL-5-105 MS	See below	Chromium	138.9	75-125					
K1209054	F38-01-SOIL-5-10S MS	F38-01-SOIL-5-10	Chromium					17.5	J+	
K1209054	F38-01-SOIL-5-10S MS	F42-01-1.5-2.5	Chromium					16.3	J+	
K1209054	F38-01-SOIL-5-10S MS	F19-01-0.5-1.5	Chromium					18.8	J+	
K1209054	F38-01-SOIL-5-10S MS	F21-01-0.5-2	Chromium					195	J+	
K1209054	F38-01-SOIL-5-10S MS	F01-01-9.5-10.5	Chromium					18.6	J+	
K1209054	F38-01-SOIL-5-10S MS	F01-02-1-2	Chromium					13.7	J+	
K1209054	F38-01-SOIL-5-10S MS	F07-01-0.5-1.0	Chromium					163	J+	
K1209054	F38-01-SOIL-5-10S MS	F16-01-3-4	Chromium					15.2	J+	
K1209054	F38-01-SOIL-5-10S MS	F16-01-15.5-16.5	Chromium					25.8	J+	
K1209054	F38-01-SOIL-5-10S MS	TR2-02-DEEP	Chromium					42.3	J+	
K1209054	F38-01-SOIL-5-10S MS	TR2-SHALLOW	Chromium					31	J+	
K1209054	F38-01-SOIL-5-10S MS	PS2-01-SHALLOW	Chromium					19.9	J+	
K1209054	F38-01-SOIL-5-10S MS	NA	Copper	557.8	75-125			4X		
K1209054	F38-01-SOIL-5-10S MS	NA	Lead	5191.4	75-125			4X		
K1209054	F07-01-0.5-1.0 MS/MSD	NA	Acenaphthene	27/61	30-113	18	40			
K1209054	F07-01-0.5-1.0 MS/MSD	NA	Pyrene	5/95	26-130	39	40			
			•							
K1209289	IB-03-3.5-4-091412 MS/MSD	NA	Phenol	30/56	18-106	60	40			
K1209289	IB-03-3.5-4-091412 MS/MSD	NA	2-Chlorophenol	31/57	27-96	60	40			

Table 2 Spike Recoveries Outside of Acceptable Limits Soil, Water, and Sediment Samples Collected September 2012 Blue Heron Mill, Phase II ESA Oregon City, Oregon

Lab	Spike	Associated		Recovery	Limit		RPD	Sample	ERM
Package	Sample ID	Sample	Compound	(%)	(%)	RPD	Limit	Result	Qualifier
K1209289	IB-03-3.5-4-091412 MS/MSD	NA	1,4-Dichlorobenzene	29/50	28-95	54	40		
K1209289	IB-03-3.5-4-091412 MS/MSD	NA	Hexachloroethane	27/50	25-102	60	40		
K1209289	IB-03-3.5-4-091412 MS/MSD	NA	N-Nitrosodi-n-propylamine	36/62	32-107	54	40		
K1209289	IB-03-3.5-4-091412 MS/MSD	NA	1,2,4-Trichlorobenzene	34/56	35-105	50	40		
K1209289	IB-03-3.5-4-091412 MS/MSD	NA	NA 4-Chloro-3-methylphenol		34-100	47	40		
K1209289	IB-03-3.5-4-091412 MS/MSD	NA	NA 2-Chloronaphthalene		37-110	48	40		
K1209289	IB-03-3.5-4-091412 MS/MSD	NA	Acenaphthene	44/67	30-113	43	40		
K1209289	IB-03-3.5-4-091412 MS/MSD	NA	4-Nitrophenol	34/69	12-141	68	40		
K1209289	IB-03-3.5-4-091412 MS/MSD	NA	2,4-Dinitrotoluene	48/72	36-127	41	40		
K1209289	IB-03-3.5-4-091412 MS/MSD	NA	Diethyl phthalate	51/78	23-131	43	40		
K1209289	IB-03-3.5-4-091412 MS/MSD	NA	4-Bromophenyl phenyl ether	46/78	45-109	53	40		
K1209289	IB-03-3.5-4-091412 MS/MSD	NA	Pentachlorophenol	41/81	10-135	67	40		
K1209289	IB-03-3.5-4-091412 MS/MSD	NA	NA Pyrene		26-130	59	40		
K1209289	IB-03-3.5-4-091412 MS/MSD	NA	NA Benzo(a)pyrene		31-122	47	40		

Data packages reviewed: K1209054, K1209255, K1209289

Key:

LCS/LCSD = Laboratory control sample/laboratory control sample duplicate

MS/MSD = Matrix spike/matrix spike duplicate

RPD = Relative percent difference

NA = Not applicable; associated samples not qualified

J+ = Detected sample result qualified as estimated and biased high

4X = Concentration of unspiked sample was greater than 4 times the amount spiked; no qualification required

Table 3

Estimated Maximum Possible Concentration Soil, Water, and Sediment Samples Collected September 2012 Blue Heron Mill, Phase II ESA Oregon City, Oregon

Lab			Reported	Report		ERM
Package	Sample ID	Compound	Concentration	Limit	Units	Qualifier
K1209054	TR2-02-DEEP	2,3,7,8-TCDD	0.959	1.21	ng/kg	U
K1209054	TR2-02-DEEP	1,2,3,6,7,8-HxCDF	4.63	6.05	ng/kg	U
K1209054	TR2-SHALLOW	2,3,7,8-TCDD	1.05	2.82	ng/kg	U
K1209054	TR2-SHALLOW	1,2,3,4,7,8,9-HpCDF	8.12	14.1	ng/kg	U
K1209054	PS2-01-SHALLOW	1,2,3,6,7,8-HxCDD	1.17	4.02	ng/kg	U
K1209289	IB-01-6inch-091412	1,2,3,4,6,7,8-HpCDF	3.49	4.49	ng/kg	U
K1209289	IB-01-2.5-3-091412	1,2,3,7,8,9-HxCDD	2.13	4.42	ng/kg	U
K1209289	IB-02-2.5-3-091412	2,3,7,8-TCDD	0.512	0.914	ng/kg	U
K1209289	IB-02-2.5-3-091412	1,2,3,7,8-PeCDD	0.558	4.57	ng/kg	U
K1209289	IB-02-2.5-3-091412	1,2,3,4,7,8-HxCDD	0.732	4.57	ng/kg	U
K1209289	IB-02-2.5-3-091412	1,2,3,7,8,9-HxCDD	2.73	4.57	ng/kg	U
K1209289	IB-02-2.5-3-091412	1,2,3,6,7,8-HxCDF	0.788	4.57	ng/kg	U
K1209289	IB-03-3.5-4-091412	1,2,3,7,8-PeCDD	0.698	4.22	ng/kg	U
K1209289	IB-03-3.5-4-091412	1,2,3,4,7,8-HxCDD	0.672	4.22	ng/kg	U
K1209289	IB-03-3.5-4-091412	1,2,3,7,8-PeCDF	0.218	4.22	ng/kg	U
K1209289	IB-03-3.5-4-091412	2,3,4,7,8-PeCDF	0.507	4.22	ng/kg	U
K1209289	IB-03-3.5-4-091412	1,2,3,4,7,8-HxCDF	1.17	4.22	ng/kg	U
K1209289	IB-03-3.5-4-091412	1,2,3,4,6,7,8-HpCDF	9.33	4.22	ng/kg	U
K1209289	F55-01-0-0.5-091412	1,2,3,7,8-PeCDD	2.20	32.1	ng/kg	U
K1209289	F55-01-0-0.5-091412	1,2,3,4,7,8-HxCDD	3.24	32.1	ng/kg	U
K1209289	F55-01-0-0.5-091412	1,2,3,6,7,8-HxCDD	30.5	32.1	ng/kg	U
K1209289	F55-01-0-0.5-091412	1,2,3,7,8-PeCDF	2.22	32.1	ng/kg	U
K1209289	F55-01-0-0.5-091412	2,3,4,7,8-PeCDF	1.92	32.1	ng/kg	U
K1209289	F55-01-0-0.5-091412	1,2,3,6,7,8-HxCDF	3.28	32.1	ng/kg	U
K1209289	F55-01-0-0.5-091412	2,3,4,6,7,8-HxCDF	3.35	32.1	ng/kg	U
K1209289	F53-01-0-0.5-091412	2,3,7,8-TCDD	0.821	3.38	ng/kg	U
K1209289	P51-01-0-0.5-091412	1,2,3,6,7,8-HxCDD	9.89	11.2	ng/kg	U
K1209289	P51-01-0-0.5-091412	1,2,3,6,7,8-HxCDF	0.818	11.2	ng/kg	U
K1209289	P51-01-0-0.5-091412	2,3,4,6,7,8-HxCDF	1.29	11.2	ng/kg	U
K1209289	TRH-01-0-0.5	1,2,3,4,7,8-HxCDD	0.505	5.39	ng/kg	U
K1209289	TRH-01-0-0.5	1,2,3,7,8,9-HxCDD	0.909	5.39	ng/kg	U
K1209289	TRH-01-0-0.5	1,2,3,7,8,9-HxCDF	0.409	5.39	ng/kg	U
K1209289	TRH-01-0-0.5	2,3,7,8-TCDF	1.02	1.08	ng/kg	U
K1209289	IB-03-1.5-2-091412	1,2,3,4,6,7,8-HpCDF	2.71	3.50	ng/kg	U

Data packages reviewed: K1209054, K1209255, K1209289

Key:

ng/kg = Nanograms per kilogram U = Nondetected TCDD = Tetrachlorodibenzo-p-dioxin HxCDF = Hexachlorodibenzofuran HpCDF = Heptachlorodibenzofuran HxCDD = Hexachlorodibenzo-p-dioxin PeCDD = Pentachlorodibenzo-p-dioxin PeCDF = Pentachlorodibenzofuran TCDF = Tetrachlorodibenzofuran
Table 4 Surrogate Recovery Results Outside of Acceptable Limits Soil, Water, and Sediment Samples Collected September 2012 Blue Heron Mill, Phase II ESA Oregon City, Oregon

Lab				Recovery	Limit		ERM
Package	Sample ID	Method	Surrogate	(%)	(%)	Note	Qualifier
K1209054	TD-02-6.5-8	DRO, RRO	n-Triacontane	6	50-150	SDO	
K1209289	F53-01-0-0.5-091412	DRO, RRO	n-Triacontane	227	50-150	SDO	
K1209289	F42-03-SP-091512	SVOC	2-Fluorobiphenyl	40	48-114		

Data packages reviewed: K1209054, K1209255, K1209289

Key:

DRO = Diesel range organics

RRO = Residual range organics

SVOC = Semivolatile organic compounds

SDO = Surrogate diluted out of sample, no qualification required; Sample diluted by a factor of 10x or more

Table 5 Labeled Compound Recovery Results Outside of Acceptable Limits Soil, Water, and Sediment Samples Collected September 2012 Blue Heron Mill, Phase II ESA Oregon City, Oregon

Lab			Labeled	Associated	Recovery	Limit	ERM
Package	Sample ID	Method	Compound	Compound	(%)	(%)	Qualifier
K1209054	PS2-01-SHALLOW	Dioxin/Furan	13C-1,2,3,6,7,8-HxCDD	1,2,3,6,7,8-HxCDD	31	40-135	J
K1209289	IB-01-2.5-3-091412	Dioxin/Furan	13C-OCDD	OCDD	38	40-135	J
K1209289	IB-02-2.5-3-091412	Dioxin/Furan	13C-OCDD	OCDD	29	40-135	J
K1209289	F55-01-0-0.5-091412	Dioxin/Furan	13C-OCDD	OCDD	29	40-135	J
K1209289	F55-01-0-0.5-091412	Dioxin/Furan	13C-1,2,3,4,6,7,8-HpCDF	1,2,3,4,6,7,8-HpCDF	39	40-135	J
K1209289	P51-01-0-0.5-091412	Dioxin/Furan	13C-1,2,3,6,7,8-HxCDD	1,2,3,6,7,8-HxCDD	39	40-135	J
K1209289	P51-01-0-0.5-091412	Dioxin/Furan	13C-1,2,3,4,6,7,8-HpCDD	1,2,3,4,6,7,8-HpCDD	39	40-135	J
K1209289	P51-01-0-0.5-091412	Dioxin/Furan	13C-OCDD	OCDD	32	40-135	J
K1209289	P51-01-0-0.5-091412	Dioxin/Furan	13C-1,2,3,4,6,7,8-HpCDF	1,2,3,4,6,7,8-HpCDF	36	40-135	J
K1209289	TR1-01-0-0.5-091512	Dioxin/Furan	13C-OCDD	OCDD	33	40-135	J
K1209289	TR1-01-0-0.5-091512	Dioxin/Furan	13C-1,2,3,4,6,7,8-HpCDF	1,2,3,4,6,7,8-HpCDF	38	40-135	J

Data packages reviewed: K1209054, K1209255, K1209289

Key:

13C = Carbon-13 labeled isotope

HxCDD = Hexachlorodibenzo-p-dioxin

OCDD = Octachlorodibenzo-p-dioxin

HpCDF = Heptachlorodibenzofuran

HpCDD = Heptachlorodibenzo-p-dioxin

J = Detected sample result qualified as estimated

Table 6

Duplicate Results and Calculated Relative Percent Differences Soil, Water, and Sediment Samples Collected September 2012 Blue Heron Mill, Phase II ESA Oregon City, Oregon

Lab			Concentration		Report			ERM
Package	Sample ID	Compound Sample Duplicate		Limit	Units	RPD	Qualifier	
		Fiel	d Duplicat	tes				
K1209255	F53-01-SW-091412	Arsenic	1.6	1.5	0.5	µg/L	6.5	
K1209255	F53-01-SW-091412	Cadmium	0.15	0.21	0.02	µg/L	33	
K1209255	F53-01-SW-091412	Chromium	1.4	1.3	0.2	µg/L	7.4	
K1209255	F53-01-SW-091412	Copper	22.2	20.8	0.1	µg/L	6.5	
K1209255	F53-01-SW-091412	Lead	4.97	9.13	0.02	µg/L	59	
K1209255	F53-01-SW-091412	Nickel	23.2	21.5	0.2	µg/L	7.6	
K1209255	F53-01-SW-091412	Zinc	415	833	0.5	µg/L	67	
K1209255	F53-01-SW-091412	DRO	280	500	250/260	µg/L	56	
K1209255	F53-01-SW-091412	Chloroform	0.97	0.98	0.50	µg/L	1.0	
		Analy	tical Dupli	cates				
K1209054	TD-02-6.5-8	Total solids	79.6	79.9	0.01	%	0.38	
K1209054	F01-01-9.5-10.5	Total solids	85.9	86.0	0.01	%	0.12	
K1209054	F38-01-SOIL-5-10D	Arsenic	8.2	5.2	0.5	mg/kg	45	J
K1209054	F38-01-SOIL-5-10D	Cadmium	0.29	0.29	0.02	mg/kg	0	
K1209054	F38-01-SOIL-5-10D	Chromium	17.5	28.4	0.2	mg/kg	47	J
K1209054	F38-01-SOIL-5-10D	Copper	109	195	0.1	mg/kg	57	J
K1209054	F38-01-SOIL-5-10D	Lead	3300	3850	101	mg/kg	15	
K1209054	F38-01-SOIL-5-10D	Nickel	13.2	18.9	0.2	mg/kg	36	J
K1209054	F38-01-SOIL-5-10D	Zinc	73.4	77.3	0.5	mg/kg	5.2	
K1209054	Batch Duplicate	Mercury	0.60	0.58	0.02	mg/kg	3.4	
K1209054	Batch Duplicate	Arsenic	1.5	1.4	0.5	µg/L	6.9	
K1209054	Batch Duplicate	Cadmium	0.16	0.16	0.02	µg/L	0	
K1209054	Batch Duplicate	Chromium	1.0	1.1	0.2	µg/L	9.5	
K1209054	Batch Duplicate	Copper	1.4	1.2	0.1	µg/L	15	
K1209054	Batch Duplicate	Lead	3.73	3.60	0.02	µg/L	3.5	
K1209054	Batch Duplicate	Nickel	2.2	2.1	0.2	µg/L	4.7	
K1209054	Batch Duplicate	Zinc	12.24	12.70	0.5	µg/L	3.7	
K1209255	Batch Duplicate	Arsenic	1.5	1.4	0.5	µg/L	6.9	
K1209255	Batch Duplicate	Cadmium	0.2	0.16	0.02	µg/L	22	
K1209255	Batch Duplicate	Chromium	1.0	1.1	0.2	µg/L	9.5	
K1209255	Batch Duplicate	Copper	1.4	1.2	0.1	µg/L	15	
K1209255	Batch Duplicate	Lead	3.7	3.6	0.02	µg/L	2.7	
K1209255	Batch Duplicate	Nickel	2.2	2.1	0.2	µg/L	4.7	
K1209255	Batch Duplicate	Zinc	12.2	12.7	0.5	µg/L	4.0	
K1209289	IB-01-6inch-091412	Total solids	55.7	55.9	0.01	%	0.4	
K1209289	TR1-01-0-0.5-091512	Total solids	21.6	19.4	0.01	%	11	
K1209289	Batch Duplicate	Mercury	0.12	0.08	0.02	mg/kg	40	

Table 6

Duplicate Results and Calculated Relative Percent Differences Soil, Water, and Sediment Samples Collected September 2012 Blue Heron Mill, Phase II ESA Oregon City, Oregon

Lab			Concentration		Report			ERM
Package	Sample ID	Compound	Sample	Duplicate	Limit	Units	RPD	Qualifier
K1209289	IB-01-6inch-091412	Arsenic	2.4	2.4	0.5	mg/kg	0	
K1209289	IB-01-6inch-091412	Cadmium	0.12	0.12	0.02	mg/kg	0	
K1209289	IB-01-6inch-091412	Chromium	24.5	24.3	0.2	mg/kg	0.8	
K1209289	IB-01-6inch-091412	Copper	26.7	26.6	0.1	mg/kg	0.4	
K1209289	IB-01-6inch-091412	Lead	8.78	6.51	0.05	mg/kg	30	J
K1209289	IB-01-6inch-091412	Nickel	23.5	23.0	0.2	mg/kg	2.2	
K1209289	IB-01-6inch-091412	Zinc	67.5	67.6	0.5	mg/kg	0.1	
K1209289	Batch Duplicate	Mercury	1.0	0.9	0.2	µg/L	11	
K1209289	Batch Duplicate	Arsenic	1.5	1.4	0.5	µg/L	6.9	
K1209289	Batch Duplicate	Cadmium	0.16	0.16	0.02	µg/L	0	
K1209289	Batch Duplicate	Chromium	1.0	1.1	0.2	µg/L	10	
K1209289	Batch Duplicate	Copper	1.4	1.2	0.1	µg/L	15	
K1209289	Batch Duplicate	Lead	3.73	3.60	0.02	µg/L	3.5	
K1209289	Batch Duplicate	Nickel	2.2	2.1	0.2	µg/L	4.7	
K1209289	Batch Duplicate	Zinc	12.24	12.70	0.5	µg/L	3.7	
K1209289	F18-01-0-0.5	DRO	29	29	27	mg/kg	0	
K1209289	F18-01-0-0.5	RRO	210	210	110	mg/kg	0	

Data packages reviewed: K1209054, K1209255, K1209289

Key:

RPD = Relative percent difference

mg/kg = Milligrams per kilogram

 μ g/L = Micrograms per liter

Batch = Sample was prepared using a non-client sample

DRO = Diesel range organics

RRO = Residual range organics

J = Detected sample result qualified as estimated

Table 7 Calibration Range Exceedances Soil, Water, and Sediment Samples Collected September 2012 Blue Heron Mill, Phase II ESA Oregon City, Oregon

Lab			Reported		ERM
Package	Sample ID	Compound	Concentration	Units	Qualifier
K1209054	TR2-02-DEEP	OCDD	18900 E	ng/kg	J
K1209054	TR2-SHALLOW	OCDD	48100 E	ng/kg	J

Data packages reviewed: K1209054, K1209255, K1209289

Key:

E = Sample concentration exceeded upper end of linear calibration range

ng/kg = Nanogram per kilogram

J = Detected sample result qualified as estimated

Table 8 TPH Results Soil, Water, and Sediment Samples Collected September 2012 Blue Heron Mill, Phase II ESA Oregon City, Oregon

Lab			Reported		ERM	
Package	Sample ID	Compound	Concentration	Units	Qualifier	Notes
K1209054	PS2-01-SW-090812	DRO	60000	µg/L	NJ	Chromatographic pattern does not match the calibration standard
K1209054	PS2-01-SW-090812	RRO	130000	µg/L	NJ	Chromatographic pattern does not match the calibration standard
						Chromatographic pattern indicates presence of greater amount of
K1209054	F38-01-SOIL-5-10	DRO	50	mg/kg	NJ	heavier molecular weight constituents than the calibration standard
K1209054	F38-01-SOIL-5-10	RRO	220	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209054	TD-02-6.5-8	DRO	2000	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209054	TD-02-6.5-8	RRO	9300	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
						Chromatographic pattern indicates presence of greater amount of
K1209054	TD-01-4.5-6	DRO	290	mg/kg	NJ	heavier molecular weight constituents than the calibration standard
K1209054	TD-01-4.5-6	RRO	1400	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
						Chromatographic pattern indicates presence of greater amount of
K1209054	F42-01-1.5-2.5	DRO	42	mg/kg	NJ	heavier molecular weight constituents than the calibration standard
K1209054	F42-01-1.5-2.5	RRO	230	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209054	F19-01-0.5-1.5	RRO	1700	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209054	F21-01-0.5-2	RRO	4600	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
						Chromatographic pattern indicates presence of greater amount of
K1209054	F01-02-1-2	DRO	52	mg/kg	NJ	heavier molecular weight constituents than the calibration standard
K1209054	F01-02-1-2	RRO	750	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209054	F07-01-0.5-1.0	DRO	2200	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209054	F07-01-0.5-1.0	RRO	7400	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209054	TR2-02-DEEP	DRO	990	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209054	TR2-02-DEEP	RRO	6400	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209054	TR2-SHALLOW	DRO	2000	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209054	TR2-SHALLOW	RRO	9100	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209054	PS2-01-SHALLOW	DRO	2300	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209054	PS2-01-SHALLOW	RRO	12000	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209054	TS-02-6.5-8	GRO	400	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209054	F07-01-0.5-1.0	GRO	11	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209054	TR2-02-DEEP	GRO	23	mg/kg	NJ	Chromatographic pattern does not match the calibration standard

Table 8 TPH Results Soil, Water, and Sediment Samples Collected September 2012 Blue Heron Mill, Phase II ESA Oregon City, Oregon

Lab			Reported		ERM	
Package	Sample ID	Compound	Concentration	Units	Qualifier	Notes
K1209054	TR2-SHALLOW	GRO	55	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209054	PS2-01-SHALLOW	GRO	120	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209255	PS1-01-SW-091412	DRO	410	µg/L	NJ	Chromatographic pattern does not match the calibration standard
K1209255	F53-01-SW-091412	DRO	280	µg/L	NJ	Chromatographic pattern does not match the calibration standard
K1209255	DUP-01-SW-091412	DRO	500	µg/L	NJ	Chromatographic pattern does not match the calibration standard
K1209255	DUP-01-SW-091412	RRO	830	µg/L	NJ	Chromatographic pattern does not match the calibration standard
K1209255	F5S-01-SW-091412	DRO	460	µg/L	NJ	Chromatographic pattern does not match the calibration standard
K1209255	TR2-01-SW-091412	DRO	6100	µg/L	NJ	Chromatographic pattern does not match the calibration standard
K1209255	TR2-01-SW-091412	RRO	3300	µg/L	NJ	Chromatographic pattern does not match the calibration standard
K1209289	F42-03-SP-091512	DRO	8500	µg/L	NJ	Chromatographic pattern does not match the calibration standard
K1209289	F42-03-SP-091512	RRO	31000	µg/L	NJ	Chromatographic pattern does not match the calibration standard
K1209289	F33-01-SP-091512	RRO	910	µg/L	NJ	Chromatographic pattern does not match the calibration standard
K1209289	F55-01-0-0.5-091412	DRO	6900	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209289	F55-01-0-0.5-091412	RRO	15000	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209289	F53-01-0-0.5-091412	DRO	4200	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209289	F53-01-0-0.5-091412	RRO	14000	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209289	P51-01-0-0.5-091412	DRO	8100	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209289	P51-01-0-0.5-091412	RRO	17000	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
						Chromatographic pattern indicates presence of greater amount of
K1209289	TR1-01-0-0.5-091512	DRO	950	mg/kg	NJ	heavier molecular weight constituents than the calibration standard
K1209289	TR1-01-0-0.5-091512	RRO	4200	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209289	TRH-01-0-0.5	DRO	2000	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209289	TRH-01-0-0.5	RRO	5200	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
						Chromatographic pattern indicates presence of greater amount of
K1209289	F18-01-0-0.5	DRO	30	mg/kg	NJ	heavier molecular weight constituents than the calibration standard
K1209289	F18-01-0-0.5	RRO	210	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209289	F55-01-0-0.5-091412	GRO	180	mg/kg	NJ	Chromatographic pattern does not match the calibration standard

Table 8 TPH Results Soil, Water, and Sediment Samples Collected September 2012 Blue Heron Mill, Phase II ESA Oregon City, Oregon

Lab			Reported		ERM	
Package	Sample ID	Compound	Concentration	Units	Qualifier	Notes
K1209289	F53-01-0-0.5-091412	GRO	75	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209289	P51-01-0-0.5-091412	GRO	50	mg/kg	NJ	Chromatographic pattern does not match the calibration standard
K1209289	TRH-01-0-0.5	GRO	19	mg/kg	NJ	Chromatographic pattern does not match the calibration standard

Data packages reviewed: K1209054, K1209255, K1209289

Key:

DRO = Diesel range organics

RRO = Residual range organics

GRO = Gasoline range organics

 $\mu g/L$ = Micrograms per liter

mg/kg = Milligrams per kilogram

NJ = Estimated value